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SECTION 7

VACUUM ENERGY STORAGE

7.1 THEORETICAL PROGRAM

Theoretical consideration of high-energy electron beam injection and switching
for the DNA Small Toroidal Pulseline (STP) have been actively pursued during the past year .
In addition , Investigation of the equilib rium of an unneutralized electron beam using a
fully relativistic rigid rotor model as well as the development of a set of relativistic
fluid equations for fu rther equilibrium and stability calculations are reported. Fully
relativistic equilibria are required to study the entire equilibrium pa rameter space,
including the regime where the perpendicular motion is relativistic, In this domain
the theoretical bounds on stored cha~ge and ~/y consistent with equilibrium at a given

value of magnetic guide field can be properly explored. To extend our ability to cal-
culate equilibria and stability in a realistic toroidal geometry requires the development
of a set of fluid equations for non—neutral , relativistic plasma. A two—mass realization
of such a set of equations Is presented in this report.

Ii~ addition to the self-consistent equilibrium calculations, a computer code has
been developed to facilitate the design of an energetic electron injector. This code
calculates the trajectory of a test electron from the fully-relativistic equations of mo-
tion In toroldal geometry. The self-consistent equilibrium fields of a core of back-
ground electrons are included , as well as a toroidal magnetic guide field , a vertical
magnetic field and a diverter field. This code permits a study of the electron dynamics
In the torus. The importance of vertical field for canceling the electron drifts due to
toroidal curvature and grad B will be reported.

Finally , a means of switching the torus through the use of vertical magnetic
fields will be presented. A design for achieving the required switching time will be
shown In detail.

• 
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7. 1. 1 High-Energy Elect ron Injection for STP

A relativistic electrostatic torus can store “
~~ 

times more charge or times

more field energy than is possible is a non—relativistic system of the same dimensions

for a given magnetic field strength . To realize these advantage s, however , the elec-

t rons must be injected with relativistic energy. The fundamental limit on stored

charge derives from the condition for crossed—field electron drift to be energetically

possible. In the presence of the space—charge electrical field , E r~ 
the self—magnetic

field , B 9, and the toroidal guide field , B ,  the electrons execute a poloidal drift with

velocity v
9 

given by

V E - R B  E
9 r 0 9  r

c B 2
y B

where B = A E and 
~~ 

= (1 - ~ 2 ) — 1 . 2 The total kinetic energy of the electron ,
A o r  0 0

including the pololdal drift , is given by

2 2 -1/2 .>‘o
“i’ = [1- A - (v

9
/c) I = 

~~~~~~ 
(v ~~~~) 2  

‘

from which we obtain the condition ‘y v  ~ Ic <1 . For y v  
9
/c 1, the kinetic energy

of the electron is infinite since this corresponds to v~ = y v
9 

= c in the refe rence

frame where the axial beam velocity is zero.

The energy for the drift motion is drawn from the stored field energy and pre-

sents an “energy penalty” when y v  ~ /c is near unity. The fractional energy ,

(y  - y )/y , is plotted In Figure 7-1 as a functIon of .y v
9
/c. From the figure we

see that for y v ~ /c c 1/2 when the last electron Is injected at the torus wall we ob-

tain conservative design criterion for a relativistic injection system. As the electrons

are magnetically compressed away from the wall , the value of .v v ~/c decreases lin-

early with radius. The theoretical maximum for ‘y v
9
/c can be determined by

8
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studying ful ly-relativistic beam equilibria. Such studies have been made and will be
discussed in a separate section of this report.

If we denote the maximum allowed values of y v ~ /c by r , we obtai n an ex—
pression for the m aximum stored charge in the device. We write

y v  Eo~~ r
C y E

O (~

and use E = -2N e/b with Q = 2~’R N e and r = b  for the minor radius of the toru s .r b b
The resulting expression for the maximum stored charge is

Q = ~ ‘rR b y B

= 0.424 ~y B (kG) milhicoulombs.

The second line here uses R = 50 cm and b = 8. 1 cm, which are typical parameters
for the STP. This expression is plotted in Figure 7-2 for ~ = 0.5 and B = B

0 0
sin ( ‘rt /2 r) .  On this figure we observe that for B = 10 kG we can inject up to 2.1 mC
with y = 1, provided we inject electrons all the way to peak field. To compress the
electrons away from the wall , we must terminate the Injection prior to the time of peak
field, with a corresponding reduction in injected charge. By using a relativistic in-
jector , 1, we increase the allowed charge by the facto r

For a given value of injected charge, Q, the energy stored in the fields of the
electron beam is given by

W
f 

= (1 + B0
2

) £ 1/4 + Ln b/a J

where a = the final beam radius. We assume Q is the maximum allowed , i. e.,

Q = ~v R b y B sin (lT t/2 r) ,  where t
f Is the time when the final electron is Injected.

The final beam radius , a, is then given by

- — — 

10 
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a
2

B = b2 B sin (irt/2 r)

or

b 1 1 1 1/2
= 

[sin ( v,t/2 r) j  i -~
Combining these results, we obtain an expression for the fina l stored field energy in

terms of the inj ection termination time tf~

Wf 
= ~~~~~ (1+~~

2 )~~Rb
2 y

2B2 sifl 2
(~~/2 r) 1-2L n Sin (~~/2 T) I

or

W
f 

= 257 .65 v~
2 -y2 B2 

(kG) sin2 ( i’t/2r) 1-2insin (~rt/2 ’r) I Joules

for R = 50 cm, b = 8. 1 cm and A
2 1. This expression is plotted in Figure 7-3 for

= 0.5. We see that the stored energy increases with tf as we would expect.

We now turn to a calculation of the power density available from switching such

a device. A mechanism for switching the beam in one transit time is described in de-

tail in a later section of this report . If the final field energy , W1, calculated above

is released in one transit time, 2wR/c , the power delivered per unit area is given by

Wf 
2 ’

(2 ?T R/c ) (~~a

Using earlier results, this expression becomes,

P = 

~~~ 
(1+~

2)y
2B2 Sifl ( ii’t/2 T) [1-2Ln sin ( iit/2 ’r) I

= 1.2 x 108 
~

2
y

2B2 (kG) sin (~vt/2 r) t l_ 2Lns In( l rt / 2T) I WattS/Cm .

I I. 12 
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This expression is also plotted on Figu re 7-3 for ~ 
= 0.5 , and the result shows a peak

in output power densit y when injection is terminated at t/T  —~ 0. 4. The peak occurs

because earlier termination of Injection leads to a more tightly-pinched beam , but

also results in less stored energy . We should emphasize that these results are valid

as long as the drift limit , y v ~~/c < ~~~~ is th e most stringent limit on charge injection.

We now examine Figures 7-2 and 7-3 to determine a set of design parameters

= for a relativistic STP. Assume that we terminate injection at the maximum output

power point , t /T  
-= 0.4 , and use B = 10 kG (the STP field coils can reach 12-15 kG).

The non—relativistic thermionic injector is then limited to 1. 2 mC stored charge cor-

responding to 4. 5 kJ stored field energy. With a relativistic injector consisting of a

low-current beam of 1 MeV electrons (y = 3), the stored charge will be limited to

3.6 mC and 40 kJ will be stored in the self-fields of the beam. The final beam radius

will be 6 . 2 cr n .

The remainder of this section will present some simple estimates of the type

of inj ection system required. Detailed studies of the relativistic injector are under

way to examine the electron trajectories for various injector geometries using a

single—particle model for the injected beam , but including the self—fields of electrons

al ready in the torus. For a low-current injector , such a model yields a reliable cal-

culation of the injected electron trajectories. The estimates to be presented below ,

therefore , should be regarded as an order-of-magnitude survey of the injector require-

ments. -

Consider an injected beam of 1 MeV electrons with current i and pulse duration

r .  The beam radius is assumed to be approximately 1 cm. The Inductance of such

a beam of length 2,r R is of order L .-~ 1 ill. Since the beam transit time around the

to rus Is 2~~R/c —. i O n s , the rate at which the total current I within the to rus Increases

is app roxi m ately

I
dt 2,rR/c

I -I
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Clean , a mu 1tl—tu n~ in~ectIon Is ma ndat ors ’. The In duced em!, L(dI /dt), associated

with injection of the beam n . ~~ t be balanced by the t ransformer. Without a transfo rmer ,
the 1nduce~d em! would ~~~ the beam ht-f re injection could be completed. If the Injec-

tion current . I, I- to~ l , j r i ~t- , the indw~ed emf will not be completely cancelled by the

t ran sfornwr , .tn -~ U t  l *afl ’  wou ld be It- ~ r :u l t -d  in *‘nt - r g \  during injection. The STP

t ransformer  can ~~~~~ . V
1 3 ~ V aroun d the torus . We therefore have

dl —
~~ ~~~~~~ 31. ( I’  II) - -— 3 x 10 Volt s

l u see

or

I -.~ 30 Amps

for the average injection current. From our earlier considerations , we wish to in-

j ect Q -~ 3.6 inC Into the to rus. Since this charge is provided by the injecto r, we must

require

Q = i r

which determines the injection pulse duration ,

r -~ 120 gis.

The magnetic field typically rises in T —‘ 3.5 ins, and for inj ection to termin-

ate at t/ r ...~ 0.4 , we have tf -~ 1.4 ins, which allows ample room for an injection win-

dow. A lower injection current with a longer pulse duration may be preferable for

obtaining uniformity in the fin al beam, and would be compatible with the transformer.

7. 1. 2 Single-Particle Orbit Calculations

A computer code has been developed to facilitate the design of a relativistic

injection system for an electrostatic torus. The trajectory of a test electron is corn-

puted using the fully relativistic equations of motion in toroldal geometry. A the rmionic

(or other) injector is assumed to have supplied a core of charge within the torus at the

15 
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time the relativistic elect ron Is inj ected. This core p rovides a rotational transform

In the particle orbits to cancel the vertical drift due to the cent ifugal and grad B

fo rces. Vert h -al  magnetic field can also be utilized to cancel the vertical drifts,

thereby elimina ting the need for rotational transform. The fields due to the core

elect runs are computed from self-consistent equilibrium solutions. The electrostatic

and self-magnetic fields of the core elect rons , including the dlama~netic contribution

to the toroldal field are all present in the equations of motion. In addition , the code

provides for a loop diverter field to distort the magnetic field lines in the vicinity of =
the Injector , and a vertical field to adjust the equilibrium location.

The following parameters are input variables in the code, and are therefo re

arbitrary:

1. Test Electron

initial position of the test electron

initial energy of the test electron

direction of the initial momentum vector of the test electron

2. Electron Cloud

quantity of previously Injected charge

radius of the electron cloud

relativistic factor ( y )  of the electron cloud

3. Geometry of the Toroldal Vessel

major radius and minor radius

4. Diverter Loop Quantities

current in loop

radius of loop

location of loop center

direction of loop axis

5. Guide Field, B sin (~rt/2 r)

B and r

— -
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6. Initial and Final Time in Computer Run and Time Step for Integration
of Equations of Motion

7. Vertical Field , B
V

Coordinates

Figure 7—4 shows the toroidal coordinate sy stem as well as local and global

cartesian coordinates. The problem is solved in the global cartesian system in order

to facilitate the inclusion of the diverter field , which is non-to roidal . The transforma-

tion from toroidal coordinates (r , 9, c~~) to global cartesian coordinates (x, y, z) is

given by

x = R c o s c~
y = -R sin~~
z = r sln 9.

where R = R + r cos 9. The inverse transformation is
0

/ 2  2
R = ~~ 1x + y

tan~~ = -y/x

r =

tan e = z/(R - R ) .

The unit vectors in the global cartesian system are

= cos 8 cos ~~~ 
- ~ sin 8 cos ~~~ 

- ~ sin ~x r 9

= -
~~ cos 8 sin ~ + ~ sin 8 sin ~ 

- cos oy r 9

= ~ s i n 9+ ~~ cos 9.Z r 9
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Given any vecto r , A ~ A + ~ A + ~~ A , In to roidal coordinates , the components
— r r 9 9  ~

In global cartesian coordinates are

A = . A = (A c o s 9 - A  sth 9) cos c~, - A  sIn~~x x — r 9

A = A = -A cos~~ -~ A c o s 9 - A  s t h 9 ) s t h~~ Hy y r 8

A =~~~~ . A = A  s in 9 + A cos 9.z z — r 8

Fields

The code is written entirely in the cgs—Gaussian electrostatic system of units.

The self fields of the electron cloud are

n a  r~~~~a

E~~~~~~~~r ,rR a
0

a/r a < r ~~~ b

B = B E .
9 o r

The toroidal guide field with the diamagnetic contribution of the electron cloud is given

by

B sin (irt/2r) 
Ii 

- 

( 

~~ 

2~ 

2 
(1 - r2

/a
2
)]  ~~ r ~ a

B ~ 
\IT R a /

0
R

B sin ( ,r t /2r )  a ~ r ~ b.R . o

In addition, there is an inductive electric field , E
8

, due to the time dependence of

B
0

/
r ~ r I  o~ I ,r t

E~ -

~~~~~~ ~~~ 
~~~~~~~~~~~~~~~~~~~~~~

- - ---~~~ - - - - ~ - - -  -

~~~~~~~~~~~

-—

~~~~~~

-,- -. - —— -

~~~ 

- - - - -
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-
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-- 
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Diverter Loop

The diverter Is modeled as a single-turn filamentary loop. Later versions

of the code will stack such loops into a finite-length solenoidal field. The diverter

field is calculated in the coordinate system shown in FIgure 7—5. The vecthr~ de-

fines the axis of the loop as well as the direction of current flow in the loop (by the

nlghthand rule). The loop radius, 
~~~ 

and the current in the loop, I ,~ are input

variables In the code. In addition , we specify the location of the center of the loop

(r~~ 9~ , ~~~ and the coordinates of an arbitrary point on the positive half of the loop

axis (r , 8 , (D ax
). The point at which we wish to know the field is (r , 8, o).

Using the transformation equations , we find the coordinates of these points in the

global cartesian system

(r
e
, 9~ , o~ ) — (x , z~ )

(r , 8 ~~CD - ( x  , y  , z )ax ax ax) ax ax ax

(r , 9,  c~ ) — (x, y, z)

We define

C = ( x  — x , y —y , z - z )
— ax L ax t ax L

p (x - x
2
, y - y

~~
, z — z

t
)

where is the vector pointing from the center of the loop to the field point. The loop

field is then given by

20
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2 p /p a2 
+ p

2 
+p 2

B 

~~~at~~~~~~
2 + p

2 ~ K~~) + 2
~~~~~~2

11

2 E~~)

B = 
1

L 
2

2 2 K(k) + 2 
‘
~ E(k)

II c p )  + p (a
~ 

-
~~~~~~) ~~p

where K(k ) and E(k) are the complete elliptic integral s,

K(k) ..L Ji - k2 sin2

ir /2
E(k) E f da - k 2 • 2

with
4a~~2 i i

2 2(a~ + p )  + p

and

/ 2  2p .1. = 

~~
p - p

11

The loop field in the global cartesian coordinate system is then

B = B 
~~~~~~~~ 

+ B ~ /p— loop — .1.

where
2

& = 
~:x .~~

x c/c
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Equations of Motion

The code solves the fully relativistic equations of motion ,

cL 
_ _ _ _ _ _ _ _ _ _ _ _ _

dt~~~~~ / 2 2 2
m~~ ’ 1 +p  / m c

d~ = - e f i ~~~+ I v x B
dt L

by a numerical integration technique similar to the classical Runge-Kutta procedure.

Output of Code

The code makes two plots , a projection of the electron trajectory in the x- v

plane and a projection in the local x-z plane. These two plots provide the complete

shape of the orbit. In addition , the code prints out the position and momentum corn-

ponents of the test electron at each time step, thereby allowing the time history of the

particle to be followed.

We have run a number of simple problems in order to check the accuracy of

the code. In one case , the calculation time step was reduced from lO~~~ sec to

lO~~~ see with no change in the output. In another example , we reversed the sign of

the toroidal guide field and caused the toroidal curvature and grad B drifts to change

direction .

One set of test calculations were of pure toroidal drifts. The toru s was

emptied , Q = 0, and the test electron launched in the toroidal direction with no initial

momentum in either the radial or the azimuthal di rections. The diverter loop was

not activated , I~ 0. In these calculations we expect the electron to execute an up-

ward vertical drift with speed
n

2 3

= 
_______ .
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The resul ts of these calculations are shown in Figures 7 - ;  th rough 7-s. In each

case , the distance to wall is 7.7 4 6 cm , since the electron begins 2 cm off axis. From

the known time of flight of the electron to the wall , we can calculate the electron drift

speed , which we compare with the theoretical value. The following table summarizes

the results.

V (Theoretical) V (Computer)
Figure 

~ o~~~~- 
Z (crn/ns) Z (cm/ns)

7—6 2 5 1.382 1.3s3

7— 7 3 5 2.456 2.421

7-8 3 10 l .2 2~’ 1.229

The small differences between the computed and theoretical values of v are entirely

consistent with the finite Larmor radius effects which are included in the code. The

largest deviation , Figure 7-7 , corresponds to the largest Larnior radius.

In the next set of test calculations , we constructed HIPAC equilibria. The test

electron started at rest , 2 cm off the minor axis. The toru s contained a fi nite amount

of charge , Q, and the azimuthal electron drift was expected with speed

V
~

- 
Qc
9

i~R a B
0 ~

Figure 7—9 shows the result for Q 10 MC and 1. 0001 for the electron cloud.

The test electron executed a perfect azimuthal drift . The calcul ated precession half-

period , i r /~~ , was 9. 75 as , and the test electron required 9.6 ns to precess half way

around the minor axis. The calculated Larmor pe riod and Larmor radius also agreed

with the computer results.

Figu re 7-10 shows the same calculation with Q 100 MC. The orbit s are large r

and the precession faster , as expected. Both Figures 7-9 and 7-10 represent 10 ns of

electron t ravel. In Figure 7-11, we repeat the calculation with Q = 100 MC , but now

2-I

~~~~~~~~~ ~~~~~-.~~~~~~~--~~—- .
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~~~~~
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Figure 7— 6. Vertical Drift y = 2 , B = 5 kG.

25

_ _ _ _ _ _  
_ _ _  _ _.—- - ---— —-- -— .- — .-.~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ - -~— - ---- p-.~~—- ~~-~- ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ -.-.. -.~~-- —--



5 8 -  0 = 0
V = 3
B0 = 5KG

V

B0 = 5KG

z,

0 —

-8
-8 0 8

V.

Figure 7— 7. Vertical DrLft ~ 3. ~

- — - - - - - - —~~ ——- —— - - -s ~~~~~~~~~~~~~~~~ — ~~~~~~~~~, — — —  --- - — — - —~



5 8 —  _ _ _

Q = 0

B0 = 10KG

8

~~~
B0 =10 KG

z.

Figure 7-8. Vertical Drift y = 3, B = 10 kG .



-; -

~~

,--

~
‘— ---- - —-——-‘—.--

~
=,.----.—

~
-.. 

~~~~~~~~~~~~~~~~ 
.- .—-,-- .----—.. —

58 - ______

0 = lOpC
V 0 = 1.0001

V

-58~~~~~~~~~~~~~~~~ I 

-

8 - 

- 0 = lO~C
-~ - 

.. 0 - 1.0001

4
4

~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 
8

Figur 7—9 .  A ,ir~uthaI I r  ~‘ Q — 10 ~ = 1.00- 1. 



-~ — -. —,. - - 

~

-- 

~~~~~~~~~~~~~~~~~~~~~ 
.——-- - -

0 =10o,.~c1.0001

V

58 - Q l OOpC
= 1.0001

z.

0 -

-58 _________________________________________

-58 0 58

V.

I . i ~u r -  7-10. Azimutha l  l)r ift  Q = 100 MC , V0 
= 1. 0001.

- ~~~~~~- - 
S - .- - ~~S



- ~~~~~~~~~~~~~~~~ ~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~

58

V 0 ~~~~~~~~~~~~~~~~~~~~~~~

}

0 lOOpC

1 

z 

~ 8~~~~~uiJ~~~~~~~

Figure 7-11. Azimuthal Drift Q 100 MC , V
0 

= 3.

- 
-— - .-

~~~~~ 
—-— -—

~~~~~~~~~~~~~~~~~~~~ 

—- —
~~~~~~~ 

- -—-
~~~~~~~~~~~~~~~~ —- ~~~~~~~~~~ 

. -
~~~~ 

-- ~~~~~~~~~~~~~~~~~~ - 5- ~~~~ ~~~~~~~~~~ —~~~~ -p- —- 5—- ~~~~~~~~~~~~~~~~~~~~~~~



- —---
~~~~
—- - - - -- 

~~~~~~
- - -

~~~~
-—

~~~~~
-. - - -  -

= 3 for the electron cloud. The test electron still begins at rest. The orbit now

is smaller because the radial force is decreased by the presence of B~~. The test elec—

tron drifts in the to roidal direction due to ~ B x~~0
B ,3.

Figures 7-12 and 7—13 show the results of test runs in which the torus contained

100 MC of charge , and the test electron was launched in the toroidal di rection with rela-

tivistic energy. In Figure 7—12 , the test electron was launched with y 2, and the

curvature drift overpowered the azimuthal drift , causing the test electron to hit the

wall. In Figure 7-13, we reduced the test-particle energy to V -r ~ 5, and obtained a

stable , confined orbit. We ncte that the center of the orbit in the x-z plane does not

coincide with the center of the conducting wall; but is shifted toward the inner wall of S —

the torus. The trajectory can be centered in the torus th rough the application of a ver- - -

tical field , B .z
The major problem encountered in relativistic electron injection from the torus

wall is that the electron trajectory lies close to the wall and is not concentric with the

walls. The inevitable result, therefore, is that unaided electrons will hit the wall.

One exception , which is not experimentally feasible , is to launch the electron from the

inner wall of the torus. Since the trajectories are displaced toward this wall , an un-

aided elect ron will be trapped within the torus. This situation is illustrated in Fig-

ure 7—14 , which shows the trajectory of an electron having V = 1.2 launched fro m the

inner wall with p p and p = 0. The electron remains in the torus during the
9 r

entire 10 as duration of the computer run. When the electron is launched in an iden-

tical manner from the lower wall of the torus , it hits the upper wall as shown in

Figure 7-15.

To overcome these difficulties , we use exte rnal magnetic fields to assist in

electron injection. The two basic types of external field under consideration are the

vertical magnetic field , B , and the diverter field. The diverter field , a simple cur-

rent loop near the injection point , serves to locally distort the magnetic field lines

near the injector so that electrons can be introduced along field lines which run to the

interior of the torus. In this way, the electron trajectory is moved away from the

wall and the centering of the orbit becomes less critical . The successful operation
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FIgure 7-12. PartIcle Orbit Q = 100 Mc , V = y 2.
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of the diverter depends on the local magnetic perturbation being large enough to allow

electron injection , yet small enough that the electron is unlikely to leave the toru s

through the diverter after only a few transits of the torus. The injected electron s must

remain within the torus for ~ i Ms. which is the expected duration of the high—energy

electron pulse.

The vertical magnetic field acts to displace the electron orbits toward the

outer wall of the toru s, thereby al lowing us to make the orbit concentric with the torus

wall. Through the use of this field we can relax the diverter field , making successful

containment of the injected electrons easier.

The vertical magnetic field B acts by producing a force on the electron in the

direction of the major radius,

e
F = — v  B ,R c 0 z

which , when coupled to B , produces a vertical drift;

13
z

V = VZ (~~13
(~)

This drif t  competes with the vertical d rift due to grad B and centrifugal forces. To

displace the beam toward the outer wall of the toru s, the vertical field must produce

a v d rift which tends to cancel the toroidal geometry drifts. Neglecting v /v
Z £ (~

relative to unity, the curvatu re drifts are given by

2 3
— 

8~ymc
V zc eRB

For these two drif ~a to cancel , we require

2
B = - 

) ‘Rmc 
- y R  ( ; : ~~- s s

z eR

S _ _



for R = 50 cm. Note that a negative (downward) vertical field is requi red to center
the orbit when v is positive. This analysis indicates that the vertical magnetic field
can be employed to remove the need for a rotational transform by canceling the vert i-
cal dri fts due to toroidal geometry (curvature and grad B).

In Figu re 7—7 we displayed the upward vertical drift of a test electron with

V = 3. From the above discussion , it appears that B = -96 Gauss should ju st cancel
this drift. Figure 7—16 shows that the expected result is realized when we rerun this
example with the inclusion of vertical field.

In Figure 7—12 , we saw that Q = 100 M C did not provide sufficient rotational
transform to contain a test electron with V = 2. By adding a vertical magnetic field ,
B = —59 Gauss , howeve r , we can eliminate the need for the rotational transform andz
the test electron is contained as shown in Figure 7—17. Note also that the contained
orbit is concentric with the torus wall. The inward shift due to the superposition of
vertical and poloidal drifts has been eliminated by the inclusion of the vertical mag-
netic field.

Studies are underway to inject relativistic electrons from near the torus wall.
Using vertical field to center the trajectory , the results shown in Figure 7-18 were
obtained. The electron was injected with V = 1. 5, p = 0, p = p fro m an inte rnalr 9
injector 1 cm from the torus wall. Multi—turn confinement of the electron is evident
in th e figure , which shows only the first 250 ns of the trajecto ry . The injector was
treated as an obstacle in the code and enclosed a 1 cm x 1 cm x 1 cm volume near the
torus wall. In this particular example, the test electron struck the injector after
908 ns. Smaller Injectors , \~~A e 1 -  -ctrons emitted close to the edge of the injecto r
should be investigated ~fl nr ffo rt - 

~ de’crmin e it such an Internal injector can form
the basis of a high-energy electron source.

7.1.3 Self—Consistent Relativistic Equlli! ri a

There are several approximate calculations for self—consistent relativistic
equilibria. The simplest approach Is to assume that the electron motion in the ‘ bea m
frame” is non-relativistic and to then transform the resulting equilibrium to the
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laboratory frame via the Lorentz transformation. The result so obtained will be shown

to be equivalent to working in the laboratory frame using the “two-mass” approxima-

tion , to be described below , in an expansion to second order in the small para meter ,

q, where

/ \ 2

q2 1 (~~ L\  << 1.2 ~~~ 0

This expansion will be shown to be valid when v/y
3 

<< 1/4 .

Starting with the beam frame (denoted by prime), and assuming the motion to

be non—relativistic , we obtain the single—particle constants of motion ,

H’ = ~~ mv ’ 2
- e c I ’ (r ’ )

= r ’ m v ’
9 

- r’ A’
9 

(r ’ )

P’ = m y ’z z

where all quantities are assumed to depend on the radial coordinate only. Any func-

tion of these constants will satisfy the stationary Vlasov equation, and we use

F (r ’, v ’) = n ’ 
~ 

[H ~ — 
~~

‘
~~~

‘
6 

— E ’J 6 (v ’ )

= n ’ 6 m — g’ (r’)lô (v ’ )

where

2 2
V’ v ’ + (v ’ - ~g’ r )r 9

and

e ‘ r ’ 1 2g ’(r ’) e ’X” - ~‘ A~~ +~~~m ( ~ j ’ r ’) +~~~ ‘
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By computing the moments of F(r , v ) ,  we see that this equilibrium corres-

ponds to a uniform density rigid-rotor with a finite beam radius , a .  The non-

- - vanishing moments are

n ’ r ’ < a ’
0

n’(r ’) =

0 r > a ’

( n’ ~ ‘r’ r’ < a’

=

(0

g’ (r’) r’ < a’

2
n’(r’)(v’

2) n’(r’) ((v ’
9
— w’r’) ) =

0 r’ > a’

where the beam radius is given by

g’ (a’) = 0

together with the conditions for self-consistency,

g’ (r’ > a’) < 0

which must be verified a posteriori.

We may also define a transverse “thermal” velocity

(v ’ 2) = I~~
2) + 

~~

‘

~~~~r ’ 
= g ’ (0)

~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ .-~~~~~~~~- -- - - - _ _ _ _ _ _ _



The self-consistent fields are obtained from Maxwell’s equations

4tr en ’ r ’ < a ’0 —

~~~~ ~~~~~~~~~~~~~~~~r —

r ’ dr ’ dr ’
0 r ’ > a ’

4ir en ’ ~~~
‘ r ’/c r ’ < a’

d i d— — - — r ’ A ’  =
dr ’ r ’ dr ’ 9

0 r ’ > a’ .

Assuming the presence of a conducting shell of radius b’, with ~~~
‘ (b’) = 0, we

obtain

2I b’ Ir ’\—N ’ e I i + 2 2 n — 1 ) r ’ < a ’[ a ’ \ a ’ / J —

2 N’ efn  a’ < r ’ < b’ 5

r ’/a ’ r ’ < a ’

Et (r ’ ) = ~~~~~~~r a’
a’/r ’ a’ < r ’ < b’

B~~r ’ - N’e [~ 
i ( ~~~

)

2

J 
r ’ < a ’

=

B’ r ’ — N’e (~
—
~~) ~— a’ < r ’ < b’

2 o C r ’ — —

B’ — 
2W 

(~~~L) I i ~~(1:. ) 

2
1 r ’ < a ’

o a ’ c [ ~~a ’ j —

B’ (r ’ ) =
Z B’ a ’ < r ’ < b ’ .

0 —

13
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Returning now to g’ (r ’), we must verify the conditions for self-consistency and

derive the relationship between the beam radius and w ’~ The equation g’(a ’ ) = 0 imp lies

= 2N ’ e~~ n + eBt a ’ 
(~~~~~~~~~~~

) 

- N’ e~ 
~~~~~~~ 

2

~~~~ mc2 ( 5 ~~~~
)

2

Using this expression , we obta in

(eB’ a’ 2 2

g’(r’<a’) ~

, ~ ~~~ 
- N ’e~ - I N e

2 
(~

L~L) 
~
i — (-

~
) 

~
- mc2 

L’)

2 

~~ 
(~~~~~~) 

2

]

which must satisfy g’(r ’ < a ’) > 0, or

L .2. 1~ + !. ( ‘
~ 

\ 
2

1 +

w ’ 2 
~ ‘ [  2 \ C / J  ~~~~

Similarly, for r ’ > a ’ we obtain

g’(r ’>a ’) = 2N’e
2 Ln + mc2 

~~~~~ 

2 
- eB’ a’ 

(~~~~~~~~~~
)

~~ [(
~~~

)

2 
_ i ]

which must satisfy g’ (r ’ > a’) < 0, or

pt 
‘
,

2 w ’ ~~ ‘
P p
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Finally , using

m (v ’
2) = g’(0) = — N’e

2 
[1 + 2 in ~T -J +

we obtain a quadratic equation for ~~~~
‘,

~~~~~~~ 
[~~ 

+ 
i 

(ui ’ a ’ )
2

1 (c~L) 
~~ 

+ [
~ (~:

‘
~) 

+ ~
v ! 2

) 1 = 0

which has two solutions, 
~~~

‘ , given by

1
_ _ _ _ _ _ _ _  

0 S
= —

± 2~ c
W’ a’

2 ~~~~~~ 
( ‘

4 \  c

[1+ ~~ (

~~~ar )
2 ][~~

(

~~~a
?)

2 

~~~~~

The requirement that 
~~

,‘ be real introduces an additional condition,

~~~~~~~ 2 

> 2 [
l 

(

~~~a~~

)

2

j [ (~~‘ ) 2 J .

If this equation is satisfied and (v ’
2
) > 0, then a self-consistent equilibrium has been

found. We can prove this statement by rewriting the quadratic equation for ~~~‘, as

= .‘ ~~~_ F (
~~~~~

\

2 ~~~ 

~~~ ~~~~~ 

~~~~~~~~

~~

‘ [ 4 \ C / 2 ~~~~ 

~ ~~.‘ 
2
a ’

2
p

which satisfies the conditions for equilibrium provided (v ’
2) > 0.
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To transform to the laboratory frame , we use a Lorentz transformation

S 

r = r’, a = a’, b = b’

v
S. S. 0

= y (II’- Ø A )
0 0 Z

A’ = O y ( A - B 4 ) o r A = 8 c 1 , B = 8 E
z o z 0 Z o 14 o r

A’ = A  or B’ = B , B ’ = B
9 9 o o z z

The plasma and cyclotron frequencies t ransform to S

2 2 2 2
4lT n ’ e 4~~ n e

2 
= 

p 
= 

Q_ 5_ 0
‘p 2 2 3 

— 2
y m

eB
0 0

0 y m c

with ~~~ 
= 4 ~ n0e2

/y0
m. The self-consistent rigid-rotor frequency is

0
2

2 [ 1 +~~~(~~~~

’

)

__

]

± - 

~~ 
( )

2 

[~ 
+ 

~ 
y )

2

] [1 + 2 ~~2

- 
~~~~~~~ 

I ~)
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and the condition for equilibrium is

q
2 

2
2 (~~~5 ~~ 

~ + ~ (w~ a ) ~~ 

~ 
+ 2 y~ 

z~~~~~~~ 

I

which we plot in Figure 7—19. From the figure we see that q << 1 is required when

~
, a/c is large. Since v~y = .2S ( w~ a’5c) is the ratio of beam field energy to par- S

tid e kinetic energy , we see that q is a small parameter for equilibria which store

energy mainly in the beam self fields.

This equilibrium may also be computed in the laborato ry frame , using the

“~~ o—mass” approximation , where the axial velocity is written as v = V + (v — V )

with the assumptions , V >> v , v - V I and V assumed to be constant. In this
0 .1. 7 01 0 

5

approximation we may write

d . 3 .
(y mv)  = m y

3 .
y m v  4- y m y  e

— 0 5. 0 Z Z

II 
= V (V .  ~

) /v 2 , = -

2~~~~
2

where y = (1 - A ) and = V /c. The single-particle equations of motion

are

dv v
2

y m 1 -~~ 
- -e  [E + ~~ (v 9

B
7 

- V B ) )

y m —
~~~ + —~--~1= ~ V Bo dt r j  c r z

dv dA
3 z e e z

y m — = - v B  =~~~~~~~~~~~ 0
0 di c r 9  c di —

_ _  
_ _ _  _ _ _ _ _ _ _ _ _ _ _ _  

S

- ~~ . — -  - .S
~~~~~~~~~~~~ - 

- _ -‘—S . 
~~~~~~~~~~~~~~~~~ ~I -

S - - - 
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These equations were derived from an expansion to second order in the small param-

eter , q, keeping terms to order q2
, by Rostoker and Hieronyinus.

The claim, dA /dt —‘ 0, implies the constancy of v .  In fact , the canonical

axial momentum,

3 eP = y my - — Az o z C Z

is the exact constant of the motion. To have dA /dt ‘~~ 0 to order q2, we must estab-

lish that the change in v during the particle orbit is of higher order. The radial vari-

ation in the trajectory of a single electron which executes an azimuthal drift at velocity

v
9 = ~j r l s  

S 

S

2v
Ar  = —

~~ =

~~

and using ~, -
~~ q2 

p (neglecting (v 2) /c
2), we have

~-~-~~~ 2q2 .

The change is A (r) over Ar  is

dA / 2 N e A r \ /  \

= 

~~ 
a2 ) (~2~

2
r ) .

From the constancy of P , we see that the change in v over the electron t rajecto ry

Is ‘1
= 

e 
AA ,

mc
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or 

~ (
~~

) 2 (
~~~~~)2 = q 2 (

~~)2 4

To satisfy

~~ V
z 2

<< q
0

S 

for second—order constancy in v we must require

1
— << —

3 4
7
°

With this assumption , the single-particle constants of motion are

S 

Hi = — y m ( v + v \ - e (~~ - A A )
2 o ~~r 9 /  O Z

P
9 

= 7 mrv
9 

- 
~~

- r A
9 

S

V ‘--‘ V S
z _ 0

correct to order q2. The distribution function

V inn
F(r , v) = 

0 0  6 [Hi — - 

~~ ~~~~~ 

- V ]

yields the same equilibrium as was previously obtained by assuming non-

relativistic motion in the beam frame.
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If we attempt to use the two mass approxi mation with the full constants of

motion ,

H = ~
- y m  (v

2 
2 )  ± y m  V

2 
- e ~ (r )

P = y mrv - 
~~

- rA (r)
0 o :l C 0

= y~~mv - A (r)

in the distribution fun ction ,

4 2

F(r , y) = ~~~~~~~ fl
0 

6 [H - w P
0 
- 6 

~ 
- ~‘ ‘~mV

the macroscopic velocity in the axial directi on is found to be

(y ) = V I IZ 0 0 \ sy c

for r < a , where is the modified Bessel function of zero order. To satisfy the

requirements of the two-mass approximation , V > >  J v - V , we must have

w a
<< i

V C

or again S

3 4
V0

With this inequal ity , we may expand the Bessel function and we recover the previous

equilibrium. The two-mass approximation , therefore, corresponds to assuming non-

relativistic motion in the beam frame and appears valid when v/y
3 

<< 1/4. A more

51
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exact condition for the validity of the two—mass approximation will emerge below ,

where we discuss fully- relativistic self—consistent rigid—rotor equilibria.

In ter ms of the fully—rela tivistic sing le—p article constants of motion in the

beam frame (prime),

H ’ = mc 2 F+ (p’ /mc )2 
- e

= r ’ (pb - ~~
- A’s)

p
7

where p’ = y ’ my ’ and p~ 
= ~y ’ mv~ = (p’ x’ — p ’ v ) /r ’ = p sin (~ 

- 9), we consider

an equilibrium distribution function of the form

F (r ’ , 
~~~

‘) = K’ ô tH’ - ~~~
‘ P’

0
- El ~~ Q ’ )  -

Introducing the variable y v/~
5-
~~ p / mc) 2 , the density and macroscopic velocity may

be eva luated as follows

n ’(r ’) = fF (r ’ , ~‘ ) d E ’

= K ’m f  y dy 
j

2~ 
d~~5 [y  - 

~~r’ 
~~~~~~~~~~~ (~~- 14) - g’ (r ’)

n ’(r ’) ( v ’
9

) = K ’mf y dY/ d~~ 
c/~ - 1 sin ~~ -

o [ Y  - i~L~L

52

- - 5 5  
~~~~~~ -5-5 — - S  -, -5~~_~ -—5--  ~_~~~~~~ 5_ ._.5_ S~~~~~~~~~

.IS_.____S_ -55- ____ 55 - -S ~~~~~~~~~~~~~~~~~~~~~



F—S-S 
~~~~~~~~~~~ 

--

~~~~~~~~

- - -

~

-5-

~~

S-5-— 5- ___________ ___

where

g’(r ’ )  — 

me2 I ~~~~ 

— 
e~~ ’r’ A’ + e~~ ’]

To carry out the indicated integrations , the 6 -function may be expressed as

_ _ _ _ _ _ _ _ _  

2

where

1/2

~
(
~~

,
rj

2 
~ 2 

- 1 ) -  ( v - g’ ( r ) J  
2

cos (, =

( w r ’  
)
~~ /

‘ 2~~~

with the requirement

(
~~~~~

)

2 

( \ ~
2

1) >

To satisfy this equation , y must lie in the range , y < v < v , where

= 

~ 
~~~~~~~~~~~~~~~~ 

2 g’(r ’) ± ~~~ ~~~~
2

(r~) -

as shown in Figure 7-20. The two intersections 
~

- , y coalesce to one when S

i

g’(r ’) = ~~~~_~~~~r t/ c) 2 th which case y = J i_ (u , r !/c) 2 > 1.  The radius of

the beam is defined by

g’(a ’ ) (W ~a~/c)
2
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with the additional requirement s that

> a ’) < ~~~~~~~‘ r ’ 
, 2

g ’(r ’ < a’) > 11 -

which must be verified ~ posteriori. These conditions ensure that the density vanishes

fo r r ’ > a ’ and is finite for r ’ < a ’.

The moments of the distribut ion function may now be evaluated as follows:

y~ 2 y d v
n ’(r ’) = K ’ m ( 

~ i 
— 

2 2 2
Jy_ V ( w ’r’/c ) (y — 1 )  — I~y — g ’ (r ’ )  I

K’ mc
2 r 2 ~y - g ’(r ’ )  ~d

n ’(r ’ ) K v  ) =
2 2  2

~ V (
~”~ 

(y — 1) — — g’ (r ’)~

whi ch yields the moments of F(r ’ , E’)~

n ’(r ’) = 
2~~ K’ mg ’(~~) 

3/2 
g’(r ’ )y ’

3 (r ’)

S 

— (~ , ‘r ’/c) ] o —

(v ’9
) =

5 for r ’ < a ’. The moments vanish for r ’ > a ’. We have defined a ’ = n ’(r ’ = 0),

g’ = g ’(r ’ = 0) and 7 ’~~~[1-(~~’r ’/C) I 
-1/2 °

We now transform to the laboratory frame and write Maxwell’s equations.

In the laboratory frame we have

5 ) ; )

~ 
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~1

n
n(r)  = g(r) ~~ (r)

=

~v ) V
z o

where

— 1 2
2= — W r/c) ~

g(r) = 
2 - ~~~~~~ A

9 
+ e (~ - f l A )  I

~ =~~ ‘ /7
0 0 0

Maxwell’s equations may therefore be written as

-4 ir en
r E  = ° 

~E -~~~~~~A + e ( ~~- R A ) f l y 3 (r)r dr r ~o c 8 o z -

dB 4ir en
= 

~~~~ E o~~~~ 
A

9
+ e ( ~~- P A ) I  ~~~ (r)

By multiplying the first equation by ~,r/c and adding to the second equation , we
obtain

-
~

--
~~~B +~~~-~- E  ~~= 0dr z c r

or

B (r) + -~~~- E (r) = B (0) Bz C r z I
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With this relation we can reduce the problem to a single equation for E ,

~~~ .L d 
- 

.. E r - ,~ 2 ~~~
dr 3 dr ‘ 1’

r L L 2 ~~ ~
‘o c

p 
ry  0

where

4 TT n e
L~~~ ° .

L0
2 

—

This equation can be solved analytically in the limit .y —~ 1, where the perpen-

dicular motion is non-relativistic. Defin e the dimensionless variables

x = r /L
0

f = E /B.r 1

= ~~L / c

= c ~~~~ ,
1

where

4,r n e

eB . 
S

I

1 y m c

For ~ 1, we obtain

d2f l d f  1 2 _
+ - (1 + = 7o ~~

dx x
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with boundary conditions f (0) = 0, f’ (O) =

The solution is then

f(x) = ~2y
2 

~~~~ 1
~ 

( x)  -y ~~~~~~X

and the corresponding potentials are

2
E V  

2
0 0  2 —  x

~(x) = - r i - I  (x) J + 2y  ~~B.L ~ l -1  (x ) +
e 0 0 1 0  o 4

A (X) =

A9
(x) = B.L t ~~ + (

2 _ 2  x 
+ ~~ ( ? ~ - 2 *~5 2 

~~ x 12
(x)

where 4~(0) = 0 has been assumed. From the equation for g(r) we see that

g0 = g(0 ) = 2 =

and

= I (x) + 
2v~~~ Cl - I (x) + ~

— J S

Vo~~ ”C x — 2 2 x3 2
- ---—

,;

- 

~~ 
+ (u’ Y~ 

) + ~ (~~ - 2 W 7  ) x 1 2 (X) I

where 1 (x), 11
(x) and I2

(x) are modified Bessel functions.
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The assumption V~ 
1 Implies that the diamagnetic contribution to B be

small. In fact , the solution presented above is not exactly self—consistent as may

be seen by computing the density from the solution for f(x )

1 d
n(x) = -n  — x f

o ~ x dx

2 _  2 —
S 

2y~~~~, 2y~~~~
= ‘~ C U — - ) I (x) + I

o 0 17

n
= — g(r)

which yields

~~~ 1 (x) + 

2 y
2 

C 1- I0
(x) I

which differs from the previous expression for g(r)/g0 by just the diamagneti c con-

tribution to A
9
, and is consistent with assuming Vi -~ 1.

In terms of

— 1
2

2 y

or 
SI

2

2 Cl2 y i
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the equation for g(r)/g0 becomes

= (1 - -=~-) I (x) +

-~

and

.&(a)_ . ( 1- -~~) I  (~~~~
) + —

~~
-

o L

defines the radius of the beam so that

— I ( a / L ) - g ’
w o 0 0

w I ( a / L ) - 1
o o 0

If a/L —~ ~, a/c >> 1, we obtain ~ ~k~’ 
and the density is approximately uniform.

For this case the fields are

E (r) — 2 i r en rr — o

B (r) = fi E
9 o r

2Ne~~ 2
B (r) = B. + ° (~~~)

The conditions for this simple equilibrium are 
~ 

a/c > 1 and a/c < 1/7 ,

which may be summarized as

1/4 < v/ ~~ < (y 2
/r) ( f l / )2

where Cl = eB /y mc and B = B~ + 2Ne ~, /c. This equation implies B1 > B / 2 ,

which places a limit on the diamagnetism of the beam. When this equation Is satis-

fied, the resulting equilibrium is the same as that obtained using the two-mass ap-

proximation. This inequality, therefore , gives the condition for validity of the two-

mass approximation.

60

-1

S-S~~~~~~~-S 5555 _ S~~~55_55 s~~~ ~~~~~~~~--— — --S ‘~~~ — S ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~ - -- ~~~~~~~~~~ ~~~~~~~~~~~~~ _~~~~~



We now turn to the numerical solution of the field equation for arbitra ry v~
.

In terms of the dlmenslpnless variables , we have

d 1 d f 2 —

~ 
—i 

~; 
xi = + w X S

V1

with f(o) = 0 and f’ (0) = —~ /2. This equation may be expressed as two first—orde r

differential equations ,

~j 
= y h -~~~~f

dh f 2 _

V1

with f(o) = 0 and h(o ) = ~ T7. In this notation

— 2 — 1/2
y (x) = C1 — (v 0 wx )  I

and the problem is specified by three input variables , 75 , ~~~ and ,,. The physical

range of X 18 0 < X < X , where x = ~~~ w)~~~ 
is the point where ‘y (x) becomes

infinite.

We can reduce the problem to a two-variable parameter space with the

following transformation: S

x = V 0~~ x

I = f /75

ii =

61
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with which we obtain

= _~~~~~~ 
~~~~~~~ 

h - 

S

d S

1 _______
—

— — 2 f —  —
dx ( 17 /V0) ( V0 w ) 71

— — — _2 1/2 —
with f ( o ) = O a n d h (o) 1. Here , y ( x) (1 - x  ) a n d O < x <  l i s the physical

range of x. The problem now has only two input parameters , ‘y ~ and ,~t/-y . These

equations are solved by a standard Runge-Kutta integration procedure.

The two input parameters represent a two-dimensional parameter space which

we may depict as a plane. Our first interest is to define the subset of this plane in

which self—consistent equilibria exist. This region of the plane will be referred to

as the equilibrium parameter space.

The density is given by

1 d
n(x)/n = - — = -~ x f ( x )

0 71/VO x dx

= ~~~3 (~~) ~~ (~ )

= 

~~~ 
(x) g (x)/g

or

g(x)/g = h (x).
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The condition for equilibri um is

— - 1 —  — —

~~(X) > y (x) fc~r x < a

g (x) < (x) for x — a

with the beam radius , x = a , given by g (~~) = (a).

Since g(o)/g = (0) = 1, we can satisf y the first condition only if g > 1 .

Furthermore , since y (1) = 0, the second condition requires th at h (x) pass through

zero somewhere in the interval , 0 < x < 1. Figure 7—2 1 illustrates the two types of

equilibrium solutions which are possible. Curv e ‘ a ’ has the properly h (x) < 
~ 

(x)

for all x. Consequently, any x in the range 0 < x < x , wher~ h (x ) = 0, can
S - max max

be the self—consistent beam radius with the suitable choice of g
0

g = [h (x) y (x) I

Curve b” , on the other han d , allows self-consistent solutions with beam radii in

the range , x - < x < x  , where h (x . ) = ‘ y ’ (x . ) and h (x ) = 0 .  Any x
mm max mm i. mm max

in this range can be the self—consistent beam radius wi th g given above.

For x > a , we must calculate h (x) from the vacuum field equations, with con-

tinuity at x a imposed as a boundary condition on the potentials and their first deriva-

tives. The resulting expression is

2 2
— — — — — 1  a x
h ( x > a )  = h (a) -~~ ~~~~~~~~~~~ ( / ~~~~ ) 

l - a f (a) -~~~— -1

— 
a f ( a ) 

~(y0 w)  (i~~~y0
)

which must pass through zero somewhere in the internal , a < x < 1, as noted above.
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If we fix ~ ~ and vary ~~~~ we always find equilibrium solutiun~ for small

values of 17/7 .  As we increase r, /- ’, ,  there is invariab l y some value at which the

solution no longer satisfies h (x) = 0 somewhere in the 0 < x < I interval. Equili-

brium solutions exist , therefo re, only for ~ ~~; less than a maximum value which de-

pends on y ~~~~ The region of the pa rameter space wh~- rt~ equilibria can be foun d is

shown in Figure 7—22. For -v ~~y < 0.3 the equilibrium parameter space is bounded

by the cu rve 17 /7 = 2 w~ which is j ust the familia r result ,

2 7
2

For larger values of y ~~~, the boundary curve peaks at 77 /7 = 0. 63 and 70 ~ = 0. 45 ,

and then falls off , app roaching the curve 17 /75 = l/(2~v ~~ ) for y
~ ~

i>  2. In this region

the maximum value of 
~ 

is independent of y .

The equilibrium pa rameter space shown in Figure 7—22 includes all possible

equilibria. For application to an energy storage device , those equilibria which corres-

pond to high ~/y beams with large beam-field energy compared to the guide field energy

are of particular interest. It is necessary , the refore , to examine the characteristics

S 
of the equilibria which are possible in various regions of the equilibrium parameter

space.

Having fixed y ~ and 77 ‘7 within the equilibrium parameter space , we can

solve the field equations for I (x) and h (x), and we then know

n (xL 
= (x) h (x)

E ( x) 1 B (x) — —

= y f ( x)
B A B. o

i 0 1

B ( x)
= 1 — x f ( x )
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At any x w e  may calculate g r h  (x) y (x) ] 1 , and i lg > 1, we may desiguate

the chosen x as the (normalized ) equilibrium beam radius , a , which is numericall y

equal to 
~ 

v~ (a)/ c. For x > a , the fields are given by 
S

- -
~~~~~ 1 -

E r 
(x) = E r 

(a) ~~ = -
~~

- B
6 

(x)

B (x ) B
z 0

where B /B . 1 - a I (a) is the ratio of the e~~ernal guide field to that at the center
0 1

of the beam. This ratio measure s the diamagnetic strength , 1 - B./B

In terms of these quantities , we may calculate ~/y for the be~~~, S

2 
~~~ a 

2~~r d r n (r)

= — — a f ( a )
2 ( 77 / 7 5 )  (y ~~~

if the bea m is enclosed in a concentric conducting shell of radius , b , the self-field

energy per unit length , W , is given by

= 

~~~~ ~~
:a

~~

2

~~:/Bj, 
2 [ i~ 

~~~ 
~ 2 

(x) + ;
2~~z~~

) ~n

where W M ~ b2 
(B

2/8 ii) is the guide field energy per unit length . The integral in

this equation is computed numerically along with the field equ ations for I and h. The

potential well depth , c~~~~~, associated with the beam is given by
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a
y B b  

~ ~ /a) (B /B ) f ( x) dx + a f  (a) in

and tflis integral is also computed numerically.

To complete the specifi cation of a particular equilibr ium , we need to specify
y and either n or B. Knowing y ,  we determine 1’) and hence 

~

~~ ~~ fj ~0 C) V 0

which relates n and B . Since g = (~~~ L /c) 2
, we can determine L , and all equili-0 0 0 p o  0

brium quantities are then known explicitly.
To illustrat e the above discussion , we construct a particular equilibrium in

detail. For example , for y ~~, = 0.3 and 71~
y = 0.5, which is within the equilibrium

parameter space , we can discuss the self-consistent equilibrium having normalized
beam radius , a -y v

9 
(a)/c = 0. 8. In this example the results of the numerical in-

. 
S tegration of the field equations are f (0 .8) = -0. 826 , h (0. -~~) = 0. 22~ ,

W/WM = 0.114 (2 75
2 

- 1) and 
~ 

= 0.2875 y B b , for b/a - = 2. The appropriate g
for this beam radius is g = 2 .63 since 

~ (0.8) = 1.67. With these results we can
derive v/y = 5.80, 

~~ 

a/c = 4.33, ~~~~~~ 
~~ 

= 0.185 and B IB . = 1.66.

For definiteness , we now specify B = 20 kG and 
~
, = 11. Then ,

= 6.53 x 1010 sec ’, n = 1.5 x io13 cm 3, L = 0.75 cm , and the beam radius isp 0 0
a = 2 cm with b = 4 cm for the conducting outer wall. The guide field energy is
W~ 80 J/cm 3, and therefore the field energy associated with the beam is
W =  2.2 kJ/cm since W/W

M = 27.6. The average energy density associated with the
beam field is 44 J/cm , and the depth of the potential well between the beam center

and the conducting wall is 75.5 MV. The electrostatic field is maximum at the beam
edge, where E

r = -33 MV/cm and falls to E = -16.5 MV/cm at the wall.

6

1

-~~ 
5~.a.. - —.~~~ —



The beam line density for this equilibrium is N = 2.3 x 10
14 cm 1, corres-

ponding to 36.5 ~C/cm of stored charge or a beam current , I = 1. 1. MA. Since

‘y y = 18.3, whi ch is 8. 85 MeV elect ron energy, the total kinetic energy of the beam

is 320 J/cm. The equilibrium fields and density profile are plotted in Figure 7-23.

On this figure we see that the beam density is close to unitorm out to tht~ beam edge.

Although the input pa r ameters y ~ and 77/)’ are useful for simplifying the

sol ution to the field equations , they are not the most usefu l set when searching for

a range of parameters in which favorable equilibria for energy storage are found.

As the previous example illustrates , there is no question about the existence of equili-

bria which can store large quantities of energy . The remaining question concerns only

the range of equilibrium pa rameters in which such equilibria exist.

With in the present formalism we must specify s x pa rameters , y ~~~, 71 /75 ,

-
~
, v

9 
(a)/c , -y ,  b/a and either n or B0

, to completely specify an equilibrium solution .

A more relevant set to the design of experiments would replace the first two param-

eters , -y and -77/7 5 ,  by ~ a/c and ~~~~~ (there are many other possibilities).

The relationship between these two sets of parameters follows from

-
p =~~~~j~~~~~a

=C V 0

- ____

or

( W a\  (_
~~~ -

~ ~‘ ~~~~ 
/ 

—
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These equations give us a procedure for inverting our formalism so that ~~, a/c and
S 

w~/v
0 ~). can be specified instead of y ~ and 77/7. We first note that since g > 1

for equilibrium,

I 

-;
~

- = 
~~~~~~~~~ 

>

is required. From Figure 7—22 , there is a bounded region of ~~, for which thi s in-

S 
equality is satisfied. We need only examine values of w within this range. In par-

ticular , for w/ v 
~~ 

> 0. 63, there are no equilibria.

Having specified 
~ 

a/c , w / y  f? . and a -y V
8 

(a)/c , we pick a value for

~ within the range given by 77 /75 > ~, / y  ç~. on Figure 7-22 and solve for 71/ v ,

~ /~~~a \  / w
7, ~ c / \ ‘~~~ -

From Figure 7—22 , we find the maximum value of (77 / 7)  at the particular choice of

j~ For equilibria to be possible at all with these parameters , we must have

\~~~~/max 
- 

~~~

If these conditions are violated , we choose a new value for y ~ and begin again .

When the inequality is satisfied , we integrate the field equations to ~~ = ~~, and solve

for g .  If g > 1 is satisfied , we have a solution which has the correct value of the

product , ( w ~ a/c) ( w / ~
, C~ ). We repeat this process for various values of y S

until a solution is obtained which also has the correct values of w a/c and w /y  f l .p p o t
individually.
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Since ?7//)~) ~ 2 ~ for all points in the equilibrium parameter space , we

know that equilibria are possible only for

w ~~v (a) 
-

C y r ? . — c
0 1

We , therefore , define the composite paramete r

(~~~, a ’c) (w /y c) )
2 ~ 

V
0 

(a)/c 
1 

~~ 
1.

In terms of this parameter , th e two-mass app roximation yields the beam—associated ti
field energy per unit length as

2 a 
2 (~~ V~~/C) E 

2 
1 b

= 2 (2 y — 1) (~) 2 ~
j - +

M 1 + (-v v6/c) ~

In Figure 7—24 we plot this expression for comparison with the computed material

results for W/W M, with b/a = 2. For -y v~ (a)/c = 0. 2 and 0. 5, we see that the

numerical results approach the two-mass result as nears unity. This behavior is

not surprising since ~ = 1 corresponds to the familiar relation , w = u,~~ /2 y

As we increase 
~0 

v~ (a)/c to 0.9, where the two-mass approximation is not expected

to hold , we find that W/WM becomes larger than the t~~ -mass result.

Similarly, Figure 7-25 presents the numerical results for ~/ y ,  which in the

two-mass approximation is simply v/y = 0. 25 (~~~ 
a/c)2. Again, we find that for

75 v
8 

(a)/c = 0. 9, the numerically calculated value of ,,/y lies above the two-mass

result.

These calculat ions have shown that there is no new limit to the stored field

energy as y v
8 

/c nears unity. In fact , self-consistent, fully relativistic equil ibria

at large values of y v~ (a)/c store larger quantities of energy th an the two-mass

approximation would predict.
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Figure 7-24. Beam-Associated Field Energy Normalized to Guide Field Energy .
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7.1.4 Relativistic Fluid Equations for Non—Neutra l Plasma

A major o’~,Lc1c in cbtai”tng tht~oretical results for relativistic non-neutral

system s has been the nonexistence of a set of fluid equations with a physical basis

for closing the moment hierarchy. In the absence of such a set of equations , the

only available tool for theoretical equilibrium and stability analysts has been the

coupled Maxwell-Vlasov system of equations. This system yields analytical solu-

dons only in the simplest geometries. Fully-relativistic cylindrical rigid-rotor

equ ilibria , for example, require numerical Integration for the equilib rium fields. 
- ‘

Stability analysis requires that the equilibrium particle orbits be employed as 
S

characteristics to determ ine the perturbed distribution function , which in turn must

be Integrable over momentum space to obtain a dispersion relation. Analytical

solutions are therefore very limited since the equilibrium fields themselve s are

often not known analytically, and even then the particle orbits are usually known

only as quadratures, a form which is not useful as a characteristic. Numerical

solutions of the Maxwell-Vlasov system are possible , but generally require difficult

and expensive particle simulation techniques , which are beyond the scope of all

but the largest computers. S

By contrast , non-relativistic neutral plasma physics has long benefited from

the existence of a closed hierarchy of MHD fluid equations, together with a number

of adiabatic laws and an energy principle for studying stability . This impressive

theoretical formalism has allowed the study of neutral plasma In such complicated

configurations as symmetric and asymmetric toroids , including toroids of non- - S

circular cross-section. Also , much of our understanding of the physical mechanisms

which underlies gross neutral plasma behavior comes from fluid analyses.

We have , therefore, undertaken the construction of a closed set of fluid

equations for non-neutral relativistic plasma. Aside from the obvious application

of such a set of equations to the electrostatic toru s, a fully-relativistic system

— - S 
S
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of fluid equations would pro vide a significant tool In studying the physics of diodes ,

where the electron beam is usually non-neutral. -

The most logical place to begin such an undertaking Is with the two-mass

approxim ation. Here , relativity enters in only a peripheral way, and problems

associated with the non-neutrality of the system can be isolated and studied. To

display the full complexity of the general problem , however , we will discuss

the moments of the fully—relativistic Vlasov equation before specializing to the S

two-mass approximation. While it is Inadequate for diode problems, the two-mass

approximation is quite sufficient for describing the electron beam in an electro-

static toru s, and for studying relativistic injection techniques.

The fully relativistic Vlasov equation may be written as

~~~~+ v. v f - e t E + 1v x B ] .~~~~~~~0— — c— —

where ~ = ymv and y = El + p2 im
2
c

Z
~

1/2 
= - v~/c~~~~”~. To compute the

moments of this equation we define

a ~~f f d2

The relativistic moment equations are then given by

+ V . n < >  = 0

ne / 1  ne / i\— fl < V >  + V • n <V v> + E . ( — I - — ) + c. — 1 x B = 0
— —— m — = yc / mc \ ‘Y / 

—

~~~n ( i ) + v.n ( L )  ~~
_

~~~~rie ( 4 ) E O

7

A
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~)x B o

- 
- - - ~~- in [-\y /  \v/  = /J

+ 
~~~~ 

[~ ~ m v)  x 
= 0 

-

inc y y / -

~~~~
-
~~

‘) + V . f l (  - ) +~~~~~~~[E( )
~~~~~~~~~)E-~~~~~~ E .  (

~~
)]

+ -~~~ [((~ ~~~
) 

~) + (~
-
~~ 

Th)] = 0 .  

S

The equations are the usual continuity equation , which is the zeroth-moment

of Vlasov’s equation , together with the v_moment~Jd2 v [vlasov Equ] , which is

necessary to determine < v>  In the cont inuity equation. The remaining equations ,

which are the moments with respect toy 1
, v/y, v v  and v v/y ,  are all required

to close the second (v-moment) equation . The moment hierarchy which is obtained

by this procedure is seen to be a multiply-branched system , in which each moment

couples not only to the next mom ent , but to seve ral higher moments as well.

This property precludes closure of the set in the usual manner , I. e. by neglecting

a single quantity such as heat flow. The situation Is more complicated here compared

with the non—relativistic moment equations because of the occurence of y In S

relativistic mechanics. In the non-relativistic domain only moments with respect

to 1, v, v v , etc. need be compited because 2 = my and kinetic energy is E = my 2 
‘2 ,

I.e. , half the trace of the v v -moment. Relativistic mechanics has ~ ymv

and E = ymc2 , which requires a distinction between 2 and x moments , as well as

requiring separat e moment equations for energy (the v-moment 1 and pressure

77 
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(the ~ v—moment). At the present time there is no general physical technique for

terminating the relativistic hierarchy of moment equations.

For various specific applications the hierarchy can be closed by postula t i ng

the for ~’ nf fhp r i istr ihutj nn func~ti on . which is then employed to exnlicitlv calculate

the form of the unknown quantities required for cl ’sure.  This te chnique was employed

by Toepfer~
21, who used a relativi stic Maxwellian to study steady-state solutions , and

by Mosher~
31, who employed a mono-energetic distribution to studs’ e-beam interac-

tions with high-Z plasma. The results obtained by this technique are only as valid as

the assumed distribution function. In Toepfe r t s work , for example , the use of a

Maxwellian to study steady-state problems is reasonable since the departure from a - S

Maxwellian behavior is only valid in the collisional regime where equilibrium times

are short.

We turn now to the two-mass approximation , in which the electrons are rela-

tivistic in one direction only, i.e. , v = V + (v - V), where V >> v , ~v V~. in

this approximation, V is a constant , 
~ 

V/c , and y - 8
2 ) -1~ 2 Z

Ri id t

Vlasov equilibrium and stability analysis in both cylindrical and large aspect-ratio

toroidal geometries have been performed in this approximation by Rostoker and

Hieronymus~
4
~. These results have been presented in a previous Final Report .

The Vlasov equation in the two-mass approximation is written as

S 

-
~~~- +  v . V f - [ E i + ~~~ !x B ) i ~~

. ~~~~~~~~ - 

~~~~~~~~

where f = f~~, v, t) and i, refe r to directions perpendicular and parallel to V.

S 

2 A J  Toepfer , Phys. Rev. A3, 1444 (1971).

D. Mosher , Bull. Am. Phys. So. 19, 856 (1974).
‘I 

~~ Hieron ymus, Ph .D. Thesis , Cornell University (1971).
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We define the quantities ,

n

_ (
~~ ,

U ’ . i ~~ 
1S

%LIU!.

E mf(v - <v>)  (V - <v>)  f dv

Q ( - < v > )  ( v - < v > ) ( v - - < v > ) f dv

With these definitions, the first three moments of Vlasov ’s equation are

— + V . n <1> = 0

= -~~~~ . ~~~~ -
-
~~~~ [E~~+~~ (<v~~x B ) ~] 

- !~~~ [ E +i(<v > X B~]

÷
e 

[P (x B)i~~~~~ )~~P] 
~ y~~nc ~~ 

- ( ~~x~ P1 = 0

where d/dt ~/Bt + <v > • V and the cross—p roduct operators (Bx).~., ii and ‘-~~~~ g are

defined by

(BX)j., 11 w (~~x w ) ~~ ,

~~~ ~~~~~~~~~~~~ (!~ P)a,

for any vector w. Here again k , ” are with respect to V. The quantity ~~~~ ~
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is the transpose of ~~ V <v> .

This set of equations may be closed by setting the heat flow tensor to zero ,

i. e. Q 0. UnlIk e ordinary one-fluid MI-ID theory , however , It Is unnecessary

to assume a fo rm of Ohm ’s law to complete the equations. In particular , the infinite

conductivity assumption , E + <v >  x B/c = 0, is very restricti ve for the single-

species equations considered here . This assumption would eli-op all electromagnctic

term s from the force equation since for a pure electron plasma the current density

is J = -ne < v >  and the charge density is p = -ne. The infinite conductivity equation 
-

is therefore equivalent to setting oE ~ J x  B/c 0. In the one-fluid MIlD equations~~

the situation is entirely different because infinite conductivity is expressed as

E÷ U x B/c = 0 where Uis  the center-of-mass velocity given by

- - 
~~~ mn -< v>

E mn

and the summation is ove r particle species.

To check the fluid equations , we begin h comparing the steady-state solutions

from the Vlasov fo rmalism with the steady-state fluid equations . To construct

an exact two-mass Vlasov equilib rium , we begin with the two-mass equations of

motion ,

2d v  v
r P 1 1

y m  [— - —Ti —e EE + — v  B - — v B
o dt r r c O  z c z A

d v  v vA r~~ e
Y i n  ~~

-— +—  = — v  B
o dt r c r z

Z 
=

5
See for example I.B. Bern stein and S.FZ . Trehan , Nuci. Fusion 1, 3 (1960).
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for a cylindrical beam with self—consistent fields E , B , B which are functions
r P z

of the radial coordinate only . The constants of motion associated with the equations

of motion are

1 2 2 1 3  2
H = ~-y m (y

r + v~ ) + ~-y in V - e d’ (r)

P = y m r v  ~- — r A  (r)
A o P c  P

3 eP ~ m y  - --- A (r)z 0 Z c z

We write the equilib rium dist r ibution function as

4 2

F(x , = ° n 6 - w P
6 

- E 6 (P -y 3m V)

y m
o I ~

‘ 2 e
= —n  ~ + — y  yn v ~- U ( r)~~ô t v  — A — V

2ir o 2 o  z z 3 z
y inc

0

where

= ~~
- y i n  

~~ 
+ (v~ -

e 1 2
U(r) = — w  r A - ed’ - —y in (w r) - -

c o  P 2 o  0 0

The moments of F(x , !) which are required to determ ine the equilib rium

field s are

n(r ) = n e (a-r)

n(r) <v > = n W r e (a—r)p 0 0

n( r) < v >  = fl
0 
(V - + f A )  e (a-r)

y mc

Ml 
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Iwhere 0 (x) Is the unit step function , which is unity for x >  0 and zero for x < 0.
The beam radius , r a , is given by d(a ) = 0 , where

1 3  e 2z! (r) = ~ y in (V + A )  + U(r )
y mc

and we have assumed th(r <a) < 0 and th(r >a) > 0 as can be demonstrated ~~p9stenori .
Higher moments of F (x , v), which are required in the steady-state fluid equations
are

~rr = = - )i
o~~ no th( r) 0 (a-r) 

S

- I

The remaining components of the pressure tensor are zero , and also < v >  0.
We can now show that the steady-state fluid equations are satisfied. The

continu ity equation is

V n < v >  = n v • <%T > + <~ P> • ~‘fl = 0

which is satisfied because < v >  = 0 and all quantities depend only on r. We therefore

have

n V . <V > < V > . v n = O

The P and z components of the momentum equation are trivially staisfi ed. The
radial component Is also satisfied because

r n e  < v >
A I 2 o zV • P = e  I n m w  r - —~~~ + — B  -

~~~~~~~~ B )
= r 10  0 )‘ r c z c P

= - n m <v> • V <v> + (~ + ~- <v> x B) .[ — — y c — J

M2 
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The pressure equation is satisfied because

V <V > p < V > . n j p 0

P (xB )~ - (Bx)~ ~Ti = 0

while

p . V<v> + [p . S:<v> 1T 
= -—

~~~~ [P(xB ) -(Bx)PJ
y mc

0

n e
= 

0 

~L(r ) B :~ ~ + Ti4 P r z  z r
y inc

0

We used V = 0, < v >  = 0 and P = P (r) in obtaining the above results. The
steady—state fluid equations are therefo re satisfied by the mom ent s of a Vlasov
equilibrium .

To complete the equilibrium calculation , we compute the fields from Maxwell ‘s
equations. The result can be used to calculat e < v >  explicitly ,

<~~> _ ~~~ + _ e 
A ( r ) = V I (~~~~z 3 z o t y cy m c  \ 0

where I Is the modifi ed Bessel function of zero order and w 2 
= 41m e2/y m.

For thl: solution to be mean ingfu l, we must require V > >  ~< v >  - V I ,  which Implies
that the argument of the Bessel function be small. The equilibrium is therefore
valid when

<< 1/4

which Is only a weak restriction on i-’/y . In this limit the equilibrium obtain ed
above reduces ~xact1y to the Rostoker-Hieronymus two-mass equIlibrium.

~
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Returning now to the full set of fluid equations , closed with the assumption
Q = 0, we can establish the adiabatic law for isotropic pressure , P = p I , by
taking the trace of the pressure equation ,

~~5 p v . < v >  = 0

We use y = -n 1 
dn/dt , which follows from the continuity equation , to obtain

the adiabatic equation of state

~~~~ 
(
~~~~

_ 5 3

> = 0.

The same result follows from ordinary one-fluid MIlD, pro vided the additional
assumption of infinit e conductivi ty is made. The adiabatic law for the two-mass
fluid equations does not require this assum ption. As an aside , we note tha t the

double-adiabatic law , or Chew-Goldberger-Low theory, does not follow from

our set of fluid equations.

Using the adiabatic law derived above, the linearized fluid equations may
be written as

— + V .  fl V = - V .  fl y
i— o 0—1

1~!i 1n m l —  + V • V v  -4- V • V v  1 -1- n m y  .~~~~‘ yo L ?t -
~~ 1 1 n j 1 -o o

n e  1= -vp1 
.~~2.. E E~I + —  (v x B 1)~. +~~- ( v x B )

n e  
I... 2 EE + -— (v x B  ) + — ( v  x B  ) J3 15 C —o —1 c —1 — o ’V 0 

-

n 1e 
1 n1e 1

— — CE £ 4 — ( v  x B  ).~.Ti — -——s CE -l- — ( v  x B  )~~~~0 C 0 — o y o c o — o
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v •  E = -4~re n V . B = 0

where we have dropped the angle brackets, < >, from our notation. The presence

of the zero—order velocity, V , is required by Earnsha~v ’s theorem , which states

that there are no static equilibria for an unneutralized collection of charged pa rticles.

A non—neutra l equilibrium , therefo re , must he dynamic in character.  Thi s feature

of the equations spoils the usual deri vation of the energy principle , which does not

apply in its conventional form to non-neutral systems.

To study the stability of finite—radius equilibria , such as the rigid-roto r

equilibrium described earlier , the linearized fluid equ ations becom e a coupled set

S of ordinary first—o rder differential equations which in general may be solved numeri-

cally by the Runge-Kutta integration procedure. Analytical solutions are pous ible

in special cases.

As an example we analyze the well-known diocotron instability , and compare

our result with Levy ’s non—relativistic analysis. We assume an equilibrium specified

by n (r) ,v~°(r)~ v °(r), p (r) , E °(r) , B~°(r)~ 13 °(r) for an annular beam with

inner radius , a , and outer radius , b. The diocotron mode is an electrostati c ,

Incompressible , azimuthal mode of an unneutrallzed beam . We therefore specialize

the analysis to pert~irbations which satisfy

=

p1 = 0

V .  0

S -~ - 5 - - -- 
- — ~~~~~

-
~~~~
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and ass isne all pertu rbed quantities to be of the fo rm

lIP — iwtn1 (r , R , t) = n1(r) e

with no dependence on the z -coordinate.

We define the frequencies

0
e B

= SP ~~mc
0

0e B z
z y m c

0

0I v~
= w - r

and solve for v~ in the linearized momentum equations ,

(2  v~ 
~ 

dp1 n1 dp 
~ 

d~’1— I ü ~~~ y - I —  -fl  Iv -c ) v — — - 1 -—-— — +—  —ir \ r z/ 1~ P iz mn dr 2 dr y m dr
0 mn 0

0

-I ~ v
1~ + r v~ _ f l z)v ir 

= 
m n r  p1 + 

Ie~

/dv° f)
— I

- i Wv  +~~~~— +~~~~~~~~~~~~~r = 0 -lz \ d r  2 ir
V0

The ~ and z components of are simply

I Vir Ii d ~ ~ p
1 ~ e

v = — 1 - -r v - f l I + - — — - -1R w \r dr 0 z/ n mw r wr  y in
0 0

- Iv  / l v ° Cl
ir z Pv1z = 1;, + — i

V
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Using the linearized pressure equation , we obtain

-i v d p
it’ 0p1 ~ dr

Therefore l v  i d p \  e~~lr I i d  0 1 o~ 1 i
y — I — — r v  — P  ~

- — — I
10 ~ \r  dr P z inn Wr dr / ~~r y in

0 0

and v1 is given by

- I v  
= ~~ ~~~o e 

- (~° 
- p ) 

~w — 2  2 dr y i n  dr r z~~~~ r 1P mn 0
0

ii 2 2 d
P ] ~

- - m n w  r
0

where
I 9~~

° \ / d p 12v °
2 _ 2  

~ ) ( 1  
~ - r v °~~ P ~ - 

2c o ( El ~
r z f  \ r  dr P zf m n w r  dr \ r z

0

I z P

y
o

The perturbed density then follow s from the linearized continuity equation

- iv  d nir o
~~,

which is the source function In Poisson ’s equation.
S For an equilib rium with constant v 0 and uniform density, n , within the annulus and

z 0

for a pressure profile , p (r) , Is goes smoothly to zero at the beam edges , Poisson ’s

equation Is simply

- - - ~S~~55-15~~~~~~~~~~~~~~~ 5 - S S  - 
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d~’ 2
i d  1 ~- —- r — -~~~~~~ 

-

r dr dr 2 1r

with jump boundary conditions at the beam edges , r = a and r b. On the inner

surface , for example , the j ump condition is - -

(~~~~
) 

(d~~~~~
S
~ 

= 

~~
2 

~~~~ 
(2 v~ (a) 

______

dr 
a~ 

\ dr / — 

~ 2 ,~ [\ dr “a
k \ a 

— (a)1 a ~ (a)

where

o ‘~ o ‘ 2
— 2  ( I v~~(a

5
~\ (2 v~ (a) \ P 0

(a)
P (a) = — I — — P  (a)) —

a / \ a 2
V

0

If v.’-~ take the non-relativistic limit (y = 1, = 0) and look for low frequency

distu rbances such that

v0
0(a)

, w < < 0  (a)a p z

we recove r Levy ’s~
6
~ fo rmulation exactly . The stabllit analysis then proceeds

as In Levy’s work , where the characteristic frequency (or timescale) is ceen to

be w Retaining relativistic effects In our analysis , in the low—frequency

regime, the characteristic frequency is reduced to (~~~
2/

~ ~ 
1 ~ T

which implies a reduced growth rate for the Instability in the relativistic regime.

The cond ition for stability, that the beam have only one free su rface , Is the same

in both the relativistic and non-relativistic regimes. S

6R .H. Levy , Phys. Fluids 8. 1288 (1965).
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7.1.5 Switching an Unneutralized Electron Beam in a Toru s

Any analysis of switching an unneutra lized electron beam in a toru s must  assume

linear stability of the beam. Without linear stability the ene rgy storage would not be

possible since nearly any pure electron mode, if u nstable , would grow at a rate corn-

parable to = (4ir ne /y m)~~
2 . At n = 1012 cm 3 and y = 5 , we have 

~ pe~~ ~
4 x 10~~~ sec . Any beam instability would e-fold in amplitude in < 1 ns at this density

and energy . The rapid growt h rate for instabilities suggests one approach to switching,

viz , changing some parameter to trigger an instability -

Gi ven linear stability , the only instabilities possible are those which result S

from a large-amplitude perturbation , one comparable in magnitude to the equilibrium S

value for some quantity. For example , by inserting a rod into the torus , we can

produce a kink perturbation with initial amplitude comparable to the beam radius.

Alternatively , Rosenbiuth has suggested that we switch the torus by injecting a fast

plasmoid into the beam , thereby rapidly charge neutralizing a local region , i .e. ,

ÔE — E , which results in an unstable neutral plasma mode .
r 

A separate line of reasoning takes advantage of the linear stability of the beam.

Such approaches as dropping a pellet into the beam or magnetically moving the beam

into a metal target have been considered and rely on beam stability during switching.

The basic objective in all switching schemes is to charge neutralize and stop

the beam in a time of order an electron t ransit time -~‘ 2iiR /c . The external circuitry

has time constants which are long compared with the switching time , and therefore 
S

the field energy will be dissipated in the target material heating it and producing x-ravs

r 
by

Plasma Switch (Rosenbiuth)

1~ 19
Fast theta-pinch hyd rogen plasma guns can be made to produce 3 x 10 - 10

electron-ion pairs . Typically, about 1~ of these particles are emitted in a fast

plasmoid , with velocities of 10~ - i~
8 cm/sec (pla smoid energy <100 J) .  Sinc e the

55 .‘SS~ S~ - - —5 5 5- 5 5-55 - S - ,._, 
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total number of electrons in the beam is ‘~ 10
1 

in a inegaj oule system (a nd — l0~~
’ in

the S I P ) , the fast plasmoid will charge neutralize a local region of the beam in

— 10 ns.

A neutral plasma conf ined in a torus cannot carry current in excess of the

Krusk al—Sha iranov limit. A full y ne utralized electrostatic toru s would therefore be

grossly unstable. With the disappearance of the electrostatic field in a loc al region ,

the B
6 

field will be unopposed and cause the beam to pinch. This unstable pinch

motion can stop a high t~/y beam. Ta rgets on the wall can be used for conversion to

x- rav s , or alternatively ,  the plasma itself , which is strongly heated during the beam

pinching , can become the x-ray source.

“Rod—Plunger ” Switch

By making a perturbation in the wall geometry , we affect the boundary conditions

which dete rmine the equilibrium fields. It is possible to actually destroy the equilibrium

locally in this manner and forc e a specific perturbation (i .e.  a k ink ) to g row . We S

imagine a cylindrical rod which is inserted through the torus wall and pushed toward

the minor axis . Initially , the rod simply compresses all the fields , E , B , B about
r 6 z

equally . When the rod has been inserted to a depth comparable to its diameter ,

however , the magnetic field lines will begin to slip around the sides of the rod , while

the electric field lines must continue to terminate on the rod . Further insertion of

the rod , therefo re , results in an enhancement in E , but little fu rther compression

o f B  or B
0

Increasing E r causes the azimutha l drift speed v
6 

to increase as electrons

pass near the rod , fo rc ing a kink-shaped perturbation to form . Let ÔE be the change

In E due to the rod . Then the azimuthal speed isr

v E ôi-
6 r
c 2 Bzo z

— - -

~

L

~

s 
- ‘~~~- 
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and we see that OE -.-- E / y 2 suffice s to make a large-amplitude perturbation in v
6
.

A s y v 6
/c approaches unity, the azimuthal drift  motion becomes energetically

impossible and the electrons will be freely accelerated toward the rod .

The switching process can be triggered by biasing the rod positive as

nears unity .  A bias voltage 10-100 kV can be rapidly applied , and results  in the

ioim at i on of a large --amplitude perturh~tion (amplit ude —beam radius) in a t ime 1 n S.

Th e lax-ge kink perturbation then grow s very rapidly , with a characteristic growt h

time <1 ns , and drives the beam into the rod which acts as a target.

This mechanism does not rely on rapid insertion of the rod , but only on fast

onset of the instability . The large E r and B
8 

fields of the beam itself are util i z ed in

switching, the bias voltage acting only as a trigger.

Pellet Switch

Perhaps the simplest approach to switching consists of dropping a metal pellet

into the beam to charge neutralize and stop the beam . The pellet then heat s up and

emits x rays. The main problem is getting the pellet into the beam. By cha rging
7

the pellet positive , the large potential between the wall and beam surface (-~ 10 - 10 V)

can be used as an accelerator. Pellet velocities up to — io 6 cm/sec are attainable in

thi s way . While the tota l beam mass (~~~ lO 8 

g~ is very small, the B
6 

and B fields

prevent the beam electrons from being drawn into the pellet. Clearly a technique for

moving the beam into the pellet is required.

A means of shifting the beam equilibrium through the application of a vertical

magnetic field appears feasible . This approach is discussed in detail in the following

section . A ve rtical magnetic field of ~—3 00 G suffices to displace the beam a distance

comparable to its diameter in -— 10 ns. A description of a techn ique for producing such

a field in -— 10 ns is also presented.

Switching By Vertical Magnetic Field

A vertical magnetic field Is generally employed to adjust the equilibrium

S position in a Tokamak . We consider this possibility for a high t.’/ ~~ electron beam in

9 1

S -~~~~~~~~~ 
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a torus. The objective is to disp la ce the elu c t r n  beam a distance of the order of

th e diameter of the beam in a time of the order of i O n s .  We conclude that th i~- is

feasible with state-of-the-art electrical engineei~flg.

We begin with the orbit equations for re1at i~istic electrons in a large aspect
(1)

r atio torus
9

idv V \ (
I x i-~~~ I x 1 •-, 1

mv — ~
- — = —e ( (E  - Rb ’ — + — v 15 —

‘ 0 dt H / ( 
r 6 r c y z c z v ç

my = -e {(E - - 
~~ v B l

v = V ri + £ cos 6l
z z~ H -

(x , y , z) are local cartesian coordinates as illustrated in Figure 7- 26 , (r , 0) are local

polar coordinate s corresponding to (x ,y) .  These equations are identical to Eq. (111

of refe rence 1 except for the addition of an ext e rnal magnetic field B which results

in the additional term(e/ c)v B in the x—component of the orbit equation. Since
z y

2

-e(E - ~~B

9
) ~ = m y x

2y 0

where = 4lT ne2 /y m is the beam plasma frequency , the to roidal term rn-V ~ 
2 ‘H

p 0 0 1

can be removed by the transformation

— 2y
2 \5 2

x x - ~~~~~~T
‘I.,p

~
1> N . Rostoker , Particle Accelerators 5, 93 (1973) .
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Figure 7-26. Local Coord inates for a Torus.
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Thi s means that the beam is not centered in the torus but shifte d to the position B a

distance ~~ 
2 V 2 /Rw 2 from the center. Similarly , it is ev ident th at the effect of

0 z p
the vertical field B is to shift the cente r of the beam from B to B’ by a displacement

7
2’v— —U

~ x~~~~~ \ B — —c z y  2 myw 0p

/v \ ~
5 o~~ w 1 w

\ P /  P

where~ ) = eB /y mc. For example , if y 21 , n = io 13 cm 3 and B 300 G ,

= 4.4  cm. For the STP , we have n 4 x 1011 cm 3 and y0 = 5, which y ield s

B = i95 G for ,Ax = 4 c m .y

The x and y component s of the orbit equations can be written as follows:

(t)a z y

= cl2y +n ~k

where 2w eB eB (t)
— 

z 
- — ____

0

In terms of the complex variable ~ 
= x + ly these equations can be con’ bine :
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1

.\ ~~uni~’ t hat B (t ) 0, 1 . 0; 1 (t) B , t •0 , th ,i t he HOltJtIOfl i:-~

~~~~~~ 
I £ X P J C 4 t

~ 
-

C(~
)
~ 

C(O) are initial values for C (t) and 
~~ 

is the slow precession frequency.

It has been assumed that w or <<1. The orbital mot ion describe d by

equation is illustrated in Figure 7—27.

The term e1~l zt describes the fast precession at the gyrofrequency of the large

toroidal field . The gyroradius of the precession is quite small. It is of order

(velocity/Cl ) <c / fl . The term exp 1 describes a slow precession about a cente r

that is shifted by V f? /fl
2 compared to the case ~) = 0. This agrees with our

expression for ~ x above . Howeve r , it is now clear that the timescale for establish-

lag this deflection is determined by the precession frequency ~~~; the speed with which

the beam moves from B to B’ in Figure 7-26.

V f l  Cl Cl
~~~~~~ ?! ~~~~~~~~~~~~~ —~

‘ = V  (B / B ) .
~ t ~~2 ~~2 z y z

We assume that B = 300 G, B 20 kG so that Ax/i~t = 4 . 5 x  lO 8 cm/sec and they z
time for one beam to displace from B to B’ is

~ t~~~1O ns

which Is also the result for STP where B = 15 kG.z
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Figure 7-27. Orbital Motion Produced by a Vertical Field B .
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We have assumed that B is turned on Instantaneously. In order to displace

the beam in about 10 ns, it will be necessary to increase B from zero to 300 G in

about this time.

We assume a set of toroidal windings to produce B as illustrated in Figure 7—28.

In order to estimate the inductance of the coil we calculate the inductance/unit length

neglecting the toroidal curvature . For w >> b

2 ~ 8 log (
~
) nanohenries/centimeter

The total inductance is

L~~ 2il-R2~~~161TR log (w/b) nil

where R is the major radius of the torus. For R = 50 cm , w = 30 cm , b = 1.5 cm ,

L = 7500 nil.

The magnetic field in the vicinity of the electron beam will be

B a 4~~L .y 5 w

For B = 300 G, I = 11.25 kA , while in the STP, I = 7 . 3 k A will be required.
y
We assume that the coil will be driven by a high voltage pulse line . In order

to reduce the effective inductance the coil would be split into N coils as illustrated

In FIgure 7—29. Each of the coils is to be counected In parallel and driven by the pulse

line. The pulse line must supply a current NI and the magnetic energy is

WM~
r
~~~U2 =~~~~~~~(NI) 2

97
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Figure 7-28. Coils for Vertical Magnetic Field .
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FIgure 7-29. split Coil and Coaxial Pulse Line.

99

H

~ 

~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~~~~~~~~~~~~~~~~ --.-~_- ----—-.~~~~~~-



____________ - -fl—— - - -‘=~
— - ---

~~~
-- -

~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ ~~~~~~~
-
~~~

-
~
-
~~~

- - - ---

Therefore the load inductance for the pulse line is

LE = L/N
2

The effective inductance for the pulse line is L
E = 7500/64 = 117 nil assuming N = 8

as illustrated In Figure 7—29. The equivalent circuit for the pulse line is illustrated

in Figure 7—30. The coils can be represented as lumped parameter circuits rather

than transmission lines since the transit time for electromagnetic waves in each

coil is (2ITR/8c) ~ 1.2 ns. From analysis of the pulse line illustrated in Figure 7-30 ,

th~. current in the inductive load would be

— (t — t 2 ) — (t—t
2

)
2Z 2 T 1 T 11(t) = V~ ~ 1 - — e + eLE L 1 2 T11~2

where 

L L
B

Ti Z 1 +Z 2 
T2 z

Time is measured from when the switch S is fired; t
2 is the transit time for line Z 2 .

This equation is valid for 0 <t - t2 <2t~ , 2t2 , Assuming LE >> L and Z 1~~Z2 ,r 2 >> 1
and the equation simplifies to

V f~ — ( t — t 2)
I(t) = 2 I i — ez2 L

The risetime of the current is LE/Z2 and since this must be about 10 us, Z 2 ~ 12C1.

The current rises to V I Z 2 which must be 8 x 11.25 = 90 kA so that the pulse line

voltage is about 1 MV. In STP a pulse line voltage of 700 kV would be required.

Clearly, this is a standard state-of-the-art pulse line. We assume that an oil

dielectric would be employed and the radius of the outer cylinder would be about the

~~~~~~~
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same as the torus , i.e. R = 50 cm , since Z = 60 log il /R . the inside radius would
0 0 1

be R . 41 cm to give an impedance of 12Cl. The ene rgy stored in the magnetic field

of the coil is

~ U 2 
= x 7500 x ~~~~ x (11.25 x 10 3) 2 

= 474 Joules

The energy stored in the pulse line is (1/2) CV 2 /unit length where

1 1
_ _ _ _  — 

~F/cm5 2 10g B /R .9 x 10 0 i

C = 0.28 x 10 5
pF/cm and the energy stored is 1.4 J/cm. The pulse line should

be at least 20 ns in electrical length which involves a physical length of 6 m and a

stored energy of 840 J.

It is possible to place the B —coil inside the toroidal metal wall. However , it

is much easier to place it outside as indicated in Figure 7-28. In this case, the metal

wall must have a poloidal slot or the magnetic field will be shielded and will not

penetrate. For penetration of the electron beam the inductive skin depth Is ~~3/2 (c/wv) =

17.5 cm so that this is not a problem for large y .

7.2 STP EXPERiMENTAL PROGRAM

7. 2.1 Introduction

During the past fiscal year construction was completed on the STP toroidal

energy storage experiment at Maxwell Laboratories, Inc. , and experiments were m l -

tiated to study the inj ection and storage of unneutralized electron columns and beams in

toroidal geometry. During the course of the year, some modifications were made to

the machine to correct magnetic field errors resulting from nonuni formities in the

stainless steel vacuum vessel. In addition, during the latter part of the year vertical

magnetic field windings were added td provide the vertical magnetic field necessary for

102
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controlling the equilibrium position of the beam. A plan view of the machine as

modified is shown in Figure 7-31, and a cross sectional drawing is shown in Figure

7-32. The vertical magnetic field windings are driven by a bank of marine batteries

which is switched by an SCR circuit.

During the course of the year , a 40 kV the rmionic electron inj ector was de-

veloped which injects -.100 ~ coulombs of charge into the machine. This injected

charge corresponds to an electron density of -.1O~~ cm 3 and creates a potential well

of — .300 kV. This amount of charge is sufficient to provide the E r x B~ particle rota-

tional transform necessary for confining accelerated particles. Effo rts near the end

of the year have focused on acceleration of the injected charge into a relativistic beam.

While these efforts have not yet been successful , we believe we have identified the

problem area involved and have outlined an experimental program which will lead to

significant relativistic beam currents.

7. 2. 2 Diagnostics

Two different kinds of probes have been used to measure the charge injected

into the STP machine. Figure 7-33 shows one of these types of probes. This probe

is called a wall probe and consists of a flat circular stainless steel disk mounted

flush with the stainless steel vacuum vessel wall but electrically insulated from the

vacuum wall. The stainless steel disk is connected to a 50 Cl cable and 50 ~? termina-

tion through a high vacuum electrical feedth rough . This probe provides two separate

measurements of the injected charge. First, the probe measures the charge induced

on the wall of the torus by the accumulation of the electron column inside the machine.

Since the probe is connected to ground through 50 f l ,  the induced charge on the disk

produces a voltage across the termination when it flows to ground. Integrating the

voltage appearing across the 50(1 termination gives a measure of the total charge in-

jected Into the torus.
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Figure 7-33. Cross-Sectional Drawing of a Wall Probe.
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In addition , the wall probes couple capacitively to the diocot ron surface flute

modes which can exist in an unneut ralized electron column. The frequency of the

diocotron mode is given by

H

As a result , the electron density may be determined by measuring the diocotron fre-

quency if the magnetic field is known . Specifically,

n = 6.9 x 108 fdB

where the diocotron frequency 1d is in Hz and the magnetic field B is in Webers/m
2
.

For most of the experiments described , wall probes were placed at two diffe rent

toroidal locations.

Another probe used is shown in Figure 7—34. This probe consists of a glass

tube with a . 020’ diameter tungsten wire protruding from the end. The probe which

is movable radially through a vacuum fitting is used to measure the depth and profile

of the potential well created by the non-neutral charge collection . This provi~ies a

measure of the density in the electron column. The probe is connected through a

10 M f)  to 10 kf) voltage divider to an operational amplifier which drives a terminated

50() cable to an oscilloscope. For most of the measurements described in this report ,

the potential probe was located toroidally 180° from the injection sector.

Assuming that the elect ron density distribution in the electron column is

uniform , the density Is related to the potential well depth by

vo =~-
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where V is the potential at the center of the column and b is the beam radius. Taking

b = 8 cm (the vacuum wall radius) gives

n = 3.45 ~~10
4 V .

Thus , the potential probe provides a third method of measuring the electron density

inside the column .

7. 2. 3 Low Voltage Injector Studies

The first injector assembly used to inject charge into the STP machine is shown

in Figure 7-35. This injector consisted of 12 thoriated , carburized , .024” diameter ,

4” long filament wires located in one quadrant of the minor circurn e~enCe. Molyben-

dum plates are placed parallel to the filament wires an~I the filament bias voltage is

applied across the plates. This results in an electric field which is perpendicular to

the toroidal magnetic field , causing the electrons to acquire an ExB drift velocity to—

ward the minor axis.

Figure 7—36 shows oscilloscope traces of machine operation using this kind of

Injector. For this shot the magnetic field had a risetime of 2 msec , reaching a ma.xi -

mum (at the minor axis) of 4. 7 kG. An injector bias voltage of 4. 0 h-V was used , and

injection was begun afte r 1.8 msec. The bias voltage was crowbarred after 200 ~sec

terminating the injection phase. The lower trace in the upper right hand photograph

shows the potential well depth time history at a sensitivity of 10.7 ky /div. As can be

seen , the potential well depth builds to a maximum during injection and then begins to

decay after the injection process is terminated. The upper trace in the lower left

photograph shows the wall probe signal gives the injected charge ( — 8  ~coulomb s for

this shot ) which is in good agreement with the potential well depth measurement if an

approximately uniform charge distribution is assumed.

The bottom trace In the lower right photograph shows the diocotron oscilla-

tions on a fast time sweep (1 ~ sec/divislon). These oscillations occur late in time

when the potential probe Is located near the center of the electron column . (This
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Indicates that the potential probe perturbs the electron column sufficiently to cause

the diocotron oscillations to begin). Measurements of the electron density from the

diocotron frequency give values of electron density which are somewhat lower than

the densities obtained from the probe measurements. Howeve r, thi s is p robably

reasonable since the diocotron waves are surface modes and the electron density is

undoubtedly somewhat lower near the edge of the electron column.

In Figure 7-37 we show probe signals for a case where the magnetic field rise

time was 3.5 msec , the peak magnetic field was 5.8 kG, and the bias voltage was

5. 0 kV. The potential well depth in this case was —, 30 kV. The lower two traces in

Figure 7—37 show diocotron wave oscillations taken with two different wall probes

located approximately 90° apart toroidally around the machine. The diocot ron modes

should have zero phase shift parallel to the magnetic field. As can be seen , the two

wall probe signals are in phase. These measurements thus provide verification that

the observed waves are indeed the diocotron modes.

In Figure 7-38 we show the variation of potential well depth with the injector

bias voltage for the low voltage injector. As can be seen, the well depth (and hence

the charge) was found to scale linearly with the bias voltage. This scaling indicates

that the injected charge can be significantly increased by increasing the bias voltage.

Advantage was taken of this scaling later in the year to obtain an increase of — ‘10 fold

in the injected charge and resulting potential well depth.

The radial potential profile for the low voltage linear injector is shown in

Figure 7-39. The profile can be reasonably well fit by a pa rabolic curve over much

of the minor radius. This Is consistent with an electron column density which is

approximately uniform over the column diameter.

Figure 7—4 0 shows the variation In potential well depth as a function of the

time delay between the start of the magnetic field and the start of the Injection phase

As can be seen, the peak potential well depth attained is maximum late In time for both

the 3.5 and 2 msec magnetic field rise times. More recent results with another in—

j ector of only slightly different geometry do not show this same variation , however.
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T/4 = 3.5 msec

— B0= 5.3kG

2 5 —

2.2 msec

-J 2 0 -
4
I—.

e t• . 3QO p~~~~
1:— 

5~0 6.0

FILAMENT BIAS VOL TAGE (kV )

Figure 7—38. Potential Well Depth as a Function of Injecto r Bias Voltage for
the Low Voltage , Linea r Injector.
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Figure 7-39. Radial Potential Profile for the Low Voltage ,
Linear Injector.
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Figure 7-40. Potential Well Depth Variation With Injection Time Delay
for the Low Voltage , Linear Injector.
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This indicates that this behavior may be due to magnetic field errors (due to mag-

netic field penetration through the stainless vacuum liner) which were accentuated

by this injector geometry.

The variation of the potential well depth with the peak magnetic field at the

minor axis is shown in Figure 7-41 for both early and late time injection. The poten-

tial well depth was observed to be only a weak function of the magnetic field for this

injector.

In orde r to study the containment time of the electron column , p rovisions

have been made to crowbar the injection voltage after a time l~
t b which can be set

by an external time delay control. After the injection voltage has been removed , the

electron density begins to decay, and this decay has been observed for a number of

different conditions. For example, Figure 7—4 2 shows the variation of the potential

decay as a function of the peak magnetic field strength . Each curv e in Figure 7-42

has been normalized to its own peak value so that the decay rates can be more easily

compa red. As can be seen , a systematic improvement in containment time occurs

as the peak magnetic field is increased. Similarly, Figure 7-43 shows the decay

rate for several different injection times. This figure shows a systematic improve-

ment In containment time as the injection window is moved to late r times. However ,

since the magnetic field during the decay time also inc reases as the injection window

is moved to later times, It is interesting to compare the data from Figures 7-42 and

7—43 on a single plot In terms of magnetic field. This is done in Figure 7-44 by

plotting the decay time (time for the potential to decay to 1/e times the peak value)

against the magnetic field at the start of Injection. The uppe r curve is obtained from

the data of Figure 7—4 3 where the time at which injection starts is varied , and the

lower curve is obtained from the data of Figure 7—42 where the peak magnetic field

is varied. A primary diffe rence between the two curves is that upper curv e was taken

with a bias voltage of 4.0 kV while the lower curve was taken with a bias voltage of

5. 0 kV. However , the two curves have very nearly the same slope, and should es-

sentiafly lay on top of one another if they had both been taken at the same bias voltage.

There is a departure from this trend at very early injection times on the upper curve.
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Figure 7—41. VariatIon of Potential Well Depth with Magnetic Field
Strength for the Low Voltage , Linear Injector.
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However, this is probably at least partially due to the fact that the magnetic field is

changing rapidly early in time so that the average magnetic field during the decay

pe riod is somewhat higher than the plotted points. The data of Figure 7-44 is inter-

esting since it shows an approximately linear scaling of cont ainment time with mag-

netic field. The containment time would be expected to scale with B2 unless magnetic

field errors or anomalous mechanisms are dominating the loss processes. It is ,

therefore , likely that the magnetic field errors play an important part in the electron

loss processes for this injector and vacuum vessel geometry.

Figure 7—45 shows the va riation of the potential decay with the width of the

injection window. The decay rate is found to improve with shorter injection windows .

This is probably due to the fact that some neutral gas is liberated during injection by

electron bombardment of the injector and nearb y vacuum wall. Reducing the width

of the injection window reduces the amount of gas liberated and hence the ion com-

ponent in the electron column , resulting in longer containment time.

In Figure 7-4 6 the effect which va rying the pressure has on the decay rate are

shown. This data was obtained by admitting small amounts of methane gas into the chamber

prior to firing the machine. As can be seen , a systematic improvement in the con-

tainment time is obtained as the pressu re is varied from 1 x ~O 6 
To rr down to

8 x ~~~~ Torr. Figure 7—47 shows the effects of pressure variation on the peak poten-

tial well depth s achieved. The results show a marked decrease in the potential well

depth at higher pressures.

Some preliminary beam acceleration experiments were pe rformed with the

low voltage linear injector to investigate the p~y ~ics of the acceleration mechanism.

Figure 7—48 shows oscilloscope traces of the beam acceleration mode using the low

voltage linear Injector. The upper trace .-~~uW s the magnetic field , the second trace

shows the accelerating electric field , and the lowe r trace shows the beam current

measu red with a Rogowski loop on a sweep speed of 20 ~z sec/division . The injection

phase was started 2.2 msec after the start of the magnetic field. The injection window

width was —400 Msec , and the acceleration phase was begun at 2300 ~sec which corres-

ponds to the end of the injection window. The beam current pulse width of —~30 ~sec
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is consistent with the time to accelerate the electrons from rest to y -~ 1.05 to 1. 0G.

At this value of y the electron drift to the wall due to the toroidal magnetic field

gradient Is more rapid than the precession around the minor axi s which cancels the

drift effects. As a result , the electron s are lost to the wall. That is , more charg e

is required to provide the rotational transform needed for highe r ) .  This point is

fu rther illustrated in Figure 7—49 which sh ows the theoretical and measured current

pulse width as a function of the accelerating electric field E~ . As can be seen , the

current pulse widths are consistent with y —.1.05 to 1.06. This agrees with theoreti-

cal predictions of the maximum y wh ich can be supported by —1 2 ~coulomb charge.

The accelerated beam appears to be stable and well behaved for the duration of the 20

to 30 Msec pulse width . However , the peak amplitude of the current pulse is consider-

ably lower than would be expected. For example , a total of 12 1.zcoulombs of charge ac-

celerated to y —  1.05 corresponds to a current of -- 350 amps , and only —50 amps was

observed. This indicates that only part of the charge is being accelerated. This coul d

be due to magnetic field Inhomogenieties resulting in the trapping of the charge in local

mirrors.

In summary ,  using the low voltage , linear injector , elect ron densities of

~~~~ cm 3 were achieved. This corresponds to an injected charge of — 12 1j coulo mbs

and a potential well depth of —33 kV. Charge containment times (time to 1 “e) of sev-

eral hundred usec were observed , and preliminary beam accelerati on experiments

showed current pulse widths in agreement with theory , but beam current s which were

anomalously low. The injected charge was found to scale linearl y with the injector

bias voltage for the linear injector. Based on these results, modifications were made

to the toroldal vacuum vessel to improve the magnetic field uniformity , and at the same

time modifications were incorporated to allow for the use of hIgher voltage injectors

in order to Increase the injected charge.

7.2.4 Vacuum Vessel Modifications

Figure 7—50 shows a comparison of the STP vacuum vessel configuration before

and after modification. For clarity , some of the po rts not involved In the modification

have been left off of Figure 7—50. The modification consisted of removing the ceramic
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Figure 7—49. Current Pulse Width as a Function of Accele rating E lectric Field.
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sector , the bellows, the filament sector , and the three aluminum “0” ring flanges.

The ceramic sector, the bellows and the filament sector were replaced with smooth

toroidal sections. In place of the three aluminum “0” ring flanges , two flanges were

added which provide electrical insulation a round the to roidal direction and in addition

provide a much more uniform cross section than the original flanges. A sketch of

these flanges is shown in Figure 7—51. This flange uses a viton “0” rIng and .035

inch thick G-10 spacers to provide the electrical insulation provided by the ceramic

sector in the original configuration. The flanges are held together by two rotatable

G— 10 rings which press against six 0. 15 inch high , 3/4 inch wide lugs. The two rings

are held together by 3/8 inch diameter permali bolts. These flanges result In almost

no effective increase in the amount of metal at the fl ange location compared to the

torus wall itself and , as a result , should lead to no magnetic field pertu rbations.

The use of viton “0” rings has not significantly degraded the operating vacuum which

is typically in the low ~~~~ Torr range. In addition to these modifications, two 4 inch

OD ports were added as shown in Figure 7-50b. These ports are designed to give

ample clearance for high voltage injectors of the type which will be described in the

following section.

7. 2.5 High Voltage Injecto r Development

By experimenting with a number of different geometries , an injecto r was de-

veloped which injects more than 100 ~coulombs of charge into the STP machine. Some

of the Injector geometries studied are shown in Figu re 7-52 , and the results of charge

injection measurements are given in Figure 7—53. In addition , the effects of dimen-

sional changes were investigated for some of the injector geometries shown in

Figure 7—52. As can be seen from Figure 7—53 , the confi guration of Figure 7—52(d )

gave the largest injected charge.

On the basis of these tests, a high voltage injecto r was built using the geometry

on Figure 7—52(d) . A photograph of this device is shown in Figure 7-54, and a sketch

is shown in Figure 7—55. This device uses a four conductor high voltage vacuum feed

throu gh to bring the Injecto r voltages and currents Into the machine. These feed
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(a) PARALLEL PLATES (b) PARALLEL PLATES WITH WIRE
MESH IN FRONT OF FILAMENT
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(c) PARALLEL PLATES WITH (d) ANGLE PLATES
WIRE MESH ON FRONT
AND SIDES

Figure 7-52. Side Views of Various Injector Geometries Used in
Charge Injection Studies.
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Figure 7—53. Summary of Results of injector Geomctry Studs .

133



___ - -‘
I,

-~ 0

Figure 7-54. Photograph of the STP High Voltage Injector.
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throughs are mounted on a 6 OD vacuum flange and the entire assembl y is designed

to fit inside a 4 inch OD port. This large port size allows large distances between

the high voltage injector component s and the torus walls which are at groun d potential.

The feed through flange is mounted on a bellows which is mounted on a vacuum flange

at the machine. The bellows allows the injector position in the magnetic field to be

changed without disturb ing the vacuum. The injector itself consists of a tungsten

dispenser cathode and two plates. The dispenser cathode is a seven turn , 1/4 inch

OD helical filament whose axis is parallel to the toroidal minor axis. The injector

voltage is applied between the plates and the dispenser cathode giving a confi guration

where the electric field due to the injector voltage is perpendicular to the toroidal

magne-tic field.

7.2.6 High Voltage Injector Results

Figure 7-56 shows potential probe measurements of the potential well depth

due to charge injected with the high voltage injector. This da ta shows that the poten-

tial well depth and hence the injected charge increases linearl y with injector bias volt-

age . Potential wells of — 300 kV were achieved with —~35 kV injector voltages. The

voltage in the center of the machine could not be measured directly above — 100 kV be-

cause the potential probes tended to flash over between 80 and 100 kV. However , the

voltage at the center of the machine can be extrapolated from measurements made near

the wall. In order to validate this technique a number of radial profiles were taken at

various lowe r injector voltages to ensure that the p rofile did not change app reciably

as the bias voltage changed. A typical radial potential profile taken with the high volt-

age injector Is shown In Figure 7—57.

The charge injected with the high voltage injector is plotted In Figure 7-58 as

a function of the injector bias voltage. As can be seen , in excess of 100 Mcoulombs
was obtained with —35 kV on the injector. In some cases the charge deduced fro m

diocotron frequency measurements was somewhat lower than that taken from potential

probe measurements . However , the diocotron frequency measurements were made

late In time since the diocotron oscillations generally did not start until several hun d red
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Voltage Injecto r as a Function of Bias Voltage.

1 
137

IllIr.~ 1ilha~~~ - - ~~
-
~~— 

~~~~~~~~~~~~~~~~~~~~~~~~~~~ --~~~~ -~~~~~
— - -~~~

- • --~~
-- ——

~
— -

~~~- - - --— ~~~
-— 

—



POTENTIAL WE LL
PROFILE

11kV
8max 5.3 kG

= 2150 psec

kV

60

x 

~~~~~ 

x
~~

0

~~~~~ x 

x

x

MINOR
AXIS

I
- I I I3 2 1 1 2 3

INSIDE OUTSIDE
DISTANCE (INCHES)

Figure 7-57. Radial Potential Profile Obtained with High
Voltage Injector.

138



~

100 ~~ x

x = CHARGE FROM
x POTENTIAL WELL

MEASUREMENTS
9 0 —  X

CHARGE FROM
DIOCOTRON
FREQUENCY

80 — 

MEASUREMENTS

B~max S.3kG

= 2150 ~tsec
7 0 —  x

x -~

X X~~6 0—

x
5 0 —

x

x 4x
4 0 —  x - -

0 10 20 30 40 INJECTOR VOLTAGE (kV)

Figure 7-58. Charge Injected with the High Voltage Injector as a Function
of Injector Bias Voltage.

139

.: Ld~-

- - - - - -~~~ -----_--~-_~~~-



- -  --- - 
_ _  

microseconds after the end of the injection phase. As a result , it was necessary to

extrapolate the density measured at this time back to the peak density using the poten-

tial probe decay rate. This limits the accuracy of the diocotron measurements. Con-

sidering this , the agreement obtained between the two measurements is reasonable.

In addition to the measurements described above , measurements were also

made of the microwave radiation from the machine. These were made using WR-90

x—band waveguide (—1” x 0. 5”) which has a lowest order mode (rE
10

) pass band of

8. 2 to 12.4 GHz. Figure 7-59 shows the mic rowave circuit used. The waveguide ex-

tended from a glass vacuum view port mounted on the torus to the screen room some

50 feet away. A variable attenuator , ferrite isolator , and diode detector were located

inside the screen room.

Figure 7-60 shows oscilloscope traces of detected microwave signals obtained

from the experiment for two different injected charge levels. The upper photograph

shows the microwave signal for a case where the injected charge was — P 42 peoulombs

while the lower photograph corresponds to —81 Mcoulombs of injected charge . As can

be seen from the photograph s, both the amplitude and shape of the microwave signal

changes as the electron density changes. In both cases , the microwave emission is

strong at the beginning of injection. However , at the lower charge level the emission

dies away rather rapidly after the early peak , while at higher injected charge levels

the emission has a longer duration. Since the emission is strongest in both cases

early in time when the elect ron density has not reached its peak , we assume the early

peak is due to a collective radiation mechanism driven by the Injection process. The

emission occuring later in time is probably due to ordinary incoherent cyclotron radi-

atlon from the electrons in the toroidal magnetic field. The electron density at the

higher charge levels is probably sufficient to give measurable incoherent cyclotron

emission while-at the lower densities the radiated power through the small vacuum

port is probably too small to be detected.

T~~t’ frequency of the radiated microwave emission should depend on the strength

of the magnetic field if the emission occurs at the cyclotron frequency. The electron
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Figu re 7—60. Oscilloscope l i-accs of fladiated Mic rowave Powe r From the Si’P
Machine . The uppe r t race in each photograp h is the microwave
signal , and the lowe r ti-ace in each case is a potential probe
signal. All traces arc 50 ~~cc div .  The uppe r microwave signal
sensitivity is 2 mv/div and the lowe F is S m v d i -~ . The uppe r
photograph corresponds to ~~-l2 ~ Cou lomhs ol inj ected change while -

‘the lowe r corresponds to -~81 MCoulombs .
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cyclotron frequency Is given by

f e B
c m 2 -sr

This corresponds to —2. 8 GHz per kilogauss of magnetic field. Thus , by changing

the toroldal magnetic field in the experiment It is possible to vary the cyclotron fre-

quency through the x—band range. Figure 7—6 1 shows a plot of the detected microwave
signal as a function of the cyclotron frequency calculated for an electron at the minor

axis of the machine as the magnetic field Is varied. The magnetic field was varied

both by changing the peak magnetic field and by changing the injection time , givin g
nearly identical results. The fact that the detected mic rowave power depends on the
magnetic field indicates that the emission is probably cyclotron radiation.

7. 2. 7 Charge Acceleration Studies

The last few weeks of this yea r ’s work were devoted to charge acceleration
experiments. These efforts indicated some unanticipated problems in the charge

acceleration phase. Although ample charge was available to provide the E and Br
particle rotational transform to cancel the toroidal drift , and the vertical magnetic
field was available for beam positioning, no large un —neutralized bean-i currents were

established. Currents initially thought to be electron beam currents were late r found
to be fl owing in the wall of the vacuum vessel , by-passing one of the insulating vacuum
flanges which was slightly misaligned. In some cases , large currents were observed

late in time due to ionization of wall material and background gas to form a plasma

allowing a tokainak discharge. FIgure 7-62 shows oscilloscope traces of a tokamak

discharge. As can be seen, a discha rge current of — 10 kA peak occurred late in

time (.—..2msec afte r injection). The x-rays generated near the peak of the current

pulse were found to penetrate up to —0. 25 Inches of lead , indicating the presence

of electrons with up to —. 200 key energy in the discharge. This implies that these

electrons were contained for several thousand passes since the t ransforme r electric

field was -.0.2 volts/cm which corresponds to an energy increase of —. 64 eV per

transit for the electrons. The long delay before the onset of the tokamak discharge

is probably the result of a slow buildup of plasma density by ionization of background
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Figure 7-62. Oscilloscope T races of a Late Time Tokamak Discharge in
the STP Machine . Upper t race: Toroidal current , 14 kA/div.
Lower trace: Scintillator - photomultiplier x-ray signal.
Horizontal sensitivity : 500 ~sec/div. The oscilloscope was
triggered at injection time. The transformer electric field
was -.0.2 volts/cm.
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gas and wall material. Normally, one of the insulating torus flanges (see Figure 7—51)

was short circuited by ground connections between the two halves of the torus , leaving

only one insulating gap in the vacuum vessel. Under these circumstances the tokamak

discha rges were usually observed late in time. When the ground was removed from

half of the machine , thus removing the shorting path around one of the flanges , no toka-

mak discharge occurred. This indicates that one o. the flanges drew some leakage

current gene rating enough plasma for the tokamak discharge. Thi s leakage current

was observed to begin early in time and persist until the onset of the tokamak mode.

The amplitude of this leakage current was a few hundred amps.

From the results of these experiment s we conclude that the machine operates

as expected in the presence of a plasma , generating a tokamak discharge, but does

not generate unneutralized electron beam currents even when a large amount of charge

Is present . (The charge decay time is not affected by the presence of the toroidal

electric field. ) This suggests that the difficulties are connected with the orbits of the

electron s in the unneutralized column . These orbits involve principally motion around

the toroidal minor axis (due to E x B drift) so that the particles can be expected to have

much greater energy perpendicular to the magnetic field than parallel to the h eld. Such

particles would be susceptible to being trapped in small ripples in the magnetic field

caused by the discrete nature of the magnetic field coils. Most of the electrons trapped

In such wells would not feel the effects of the toroidal electric field since the electric

field would result only in a small current even thou gh a large amount of charge is pre-

sent for several hundred microseconds after injection. This is precisely the behavior

that is observed. The currents observed are —50 amps.

This situation can be corrected by injecting electrons with significant energ y

pa rallel to the magnetic field that they will not be trapped In magnetic wells. Such

electrons would then be further accelerated by the transformer each time they passed

under the insulating vacuum flanges. This injection process coul d be best accomplished

with a relativistic injector. Figure 7—63 shows a drawing of a relativistic electron in-

je ctor. Ba sically the device would consist of a diode driven by a marx generator. The

diode is connected to the marx by a vacuum coaxial line. The insulator and marx

1-16 
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generator would be located in an oil tank , and a rough vacuum would be used as a

buffer region between the oil seal and the high vacuum region. The marx generato r ,

oil tank , and insulator for this injector are part of an existing small generator which

can be readily adapted to relativistic injection. The marx would be equipped with a

crowbar so that the voltage could be removed fro m the diode before gap closure

occurred.

Computer calculations Indicate that this scheme could lead to a large increase

in the charge level inside the machine. A similar injection scheme has been used by

researchers In Japan1 to produce an unneut ralized electron beam in a toka.niak-like

device. With the presence of a previously Injected thermionic core of charg e the in-

jection and trapping efficiency in the STP machine should be good . Thus , this approach

should lead to both higher charge levels and significant beam currents.

1 A. Mohri , M. Masuzake , T. Tsuzuke , and K. Ikuta. “Formation of a Non-Neut ral

Relativistic Elect ron Beam Ring in a Torotdal Magnetic Field , Phys. Rev. Letters ,

34, 574 (1975).
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